Raymondmcfarland1092

Z Iurium Wiki

Aging impacts the ocular surface and reduces intraepithelial corneal nerve (ICN) density in male and female mice. Many researchers use retired breeders to study naturally aged female mice. Yet, the impact of parity and the length of time since breeders were retired on age-related changes in the intraepithelial corneal nerves is not known. Here we study 2 month (M) nulliparous (NP) females as well as 9M, 10M, and 11M NP and multiparous (MP) female mice to determine whether parity impacts the age-related decline seen in corneal axon density; 9M male mice are also included in these assessments. After showing that parity attenuates age-related loss in axon density, we also assess the impact of parity on corneal epithelial cell proliferation and find that it impacts cell proliferation and axon density normalized by cell proliferation. Stromal nerve arborization is also impacted by aging with parity enhancing stromal nerves in older mice. qPCR was performed on 20 genes implicated in ICN density using corneal epithelial RNA isolated from 10M NP and MP mice and showed that NGF expression was significantly elevated in MP corneal epithelium. Corneal sensitivity was significantly higher in 9M MP mice compared to NP mice and increased sensitivity in MP mice was accompanied by increased nerve terminals in the apical and middle cell layers. Selleckchem MEK inhibitor Together, these data show that parity in mice attenuates several aspects of the age-related decline seen on the ocular surface by retaining sensory axons and corneal sensitivity as mice age.Damage to our genomes triggers cellular senescence characterised by stable cell cycle arrest and a pro-inflammatory secretome that prevents the unrestricted growth of cells with pathological potential. In this way, senescence can be considered a powerful innate defence against cancer and viral infection. However, damage accumulated during ageing increases the number of senescent cells and this contributes to the chronic inflammation and deregulation of the immune function, which increases susceptibility to infectious disease in ageing organisms. Bacterial and viral pathogens are masters of exploiting weak points to establish infection and cause devastating diseases. This review considers the emerging importance of senescence in the host-pathogen interaction we discuss the pathogen exploitation of ageing cells and senescence as a novel hijack target of bacterial pathogens that deploys senescence-inducing toxins to promote infection. The persistent induction of senescence by pathogens, mediated directly through virulence determinants or indirectly through inflammation and chronic infection, also contributes to age-related pathologies such as cancer. This review highlights the dichotomous role of senescence in infection an innate defence that is exploited by pathogens to cause disease.Small-intestinal neuroendocrine tumors (SI-NETs) are the most prevalent small bowel neoplasms with an increasing frequency. In the multimodal management of SI-NETs, surgery plays a key role, either in curative intent, even if R0 resection is feasible in only 20% of patients due to advanced stage at diagnosis, or palliative intent. Surgeons must be informed about the specific surgical management of SI-NETs according to their hormonal secretion, their usual dissemination at the time of diagnosis and the need for bowel-preserving surgery to avoid short bowel syndrome. The aim of this paper is to review the surgical indications and techniques, and perioperative and postoperative management of SI-NETs.Neuroinflammation and oxidative stress are being recognized as characteristic hallmarks in many neurodegenerative diseases, especially those that portray proteinopathy, such as Alzheimer's disease (AD). Heme-oxygenase 1 (HO-1) is an inducible enzyme with antioxidant and anti-inflammatory properties, while microglia are the immune cells in the central nervous system. To elucidate the brain expression profile of microglial HO-1 in aging and AD-progression, we have used the 5xFAD (five familial AD mutations) mouse model of AD and their littermates at different ages (four, eight, 12, and 18 months). Total brain expression of HO-1 was increased with aging and such increase was even higher in 5xFAD animals. In co-localization studies, HO-1 expression was mainly found in microglia vs. other brain cells. The percentage of microglial cells expressing HO-1 and the amount of HO-1 expressed within microglia increased progressively with aging. Furthermore, this upregulation was increased by 2-3-fold in the elder 5xFAD mice. In addition, microglia overexpressing HO-1 was predominately found surrounding beta-amyloid plaques. These results were corroborated using postmortem brain samples from AD patients, where microglial HO-1 was found up-regulated in comparison to brain samples from aged matched non-demented patients. This study demonstrates that microglial HO-1 expression increases with aging and especially with AD progression, highlighting HO-1 as a potential biomarker or therapeutic target for AD.Foodborne diseases represent a major risk to public health worldwide. In this study, LPST153, a novel Salmonella lytic phage with halo (indicative of potential depolymerase activity) was isolated by employing Salmonella enterica serovar Typhimurium ATCC 13311 as the host and had excellent lytic potential against Salmonella. LPST153 is effectively able to lyse most prevalent tested serotypes of Salmonella, including S. Typhimurium, S. Enteritidis, S. Pullorum and S. Gallinarum. Morphological analysis revealed that phage LPST153 belongs to Podoviridae family and Caudovirales order and could completely prevent host bacterial growth within 9 h at multiplicity of infection (MOI) of 0.1, 1, 10 and 100. LPST153 had a latent period of 10 min and a burst size of 113 ± 8 PFU/cell. Characterization of the phage LPST153 revealed that it would be active and stable in some harsh environments or in different conditions of food processing and storage. After genome sequencing and phylogenetic analysis, it is confirmed that LPST153 is a new member of the Teseptimavirus genus of Autographivirinae subfamily. Further application experiments showed that this phage has potential in controlling Salmonella in milk and sausage. LPST153 was also able to inhibit the formation of biofilms and it had the ability to reduce and kill bacteria from inside, including existing biofilms. Therefore, the phage LPST153 could be used as a potential antibacterial agent for Salmonella control in the food industry.

Autoři článku: Raymondmcfarland1092 (Sloth Block)