Ralstonmcdaniel1838

Z Iurium Wiki

An improved definition of EOCG may provide a reference for clinical diagnosis and treatment, and clear guidelines may serve as a basis for more accurate diagnosis and the development of effective treatment strategies.Extensive research has contributed to the current understanding of the critical roles played by long non-coding RNAs in various types of cancer. The present study aimed to investigate the function and mechanism of the long non-coding RNA, MIR4435-2HG (also termed LINC00978), in breast cancer growth and metastasis. this website Using Gene Expression Profiling Interactive Analysis, an online web tool, it was revealed that MIR4435-2HG was upregulated in breast cancer tissue, and its high expression was associated with poor prognosis based on The Cancer Genome Atlas database. MIR4435-2HG knockdown increased cell apoptosis but decreased cell proliferation, migration and invasion. MIR4435-2HG knockdown increased pro-apoptotic protein expression but decreased anti-apoptotic protein expression. In addition, MIR4435-2HG knockdown leads to dysregulation of epithelial-to-mesenchymal transition-associated genes. Furthermore, knockdown of MIR4435-2HG results in inactivation of the Wnt/β-catenin signaling pathway. The results of the present study demonstrate the tumor-promoting role of MIR4435-2HG in breast cancer progression.Colorectal cancer (CRC) is a common malignant tumor of the digestive tract and one of the leading causes of cancer-associated mortality. Secreted phosphoprotein-1 (SPP-1) is overexpressed in CRC and promotes cancer progression, but the underlying mechanisms underlying SPP-1 function remain unclear. The present study aimed to explore the effects of Wnt/β-catenin signaling in SPP-1-induced CRC progression. The expression patterns of SPP-1 in CRC tissues were examined using reverse transcription-quantitative (RT-q)PCR, western blotting and immunohistochemistry. SPP-1 expression in cells was assessed using RT-qPCR and western blotting. Cell-Counting Kit-8, flow cytometry and tumor-burdened mice experiments were used to determine cell proliferation, apoptosis and in vivo tumor formation abilities. The results showed that SPP-1 expression was markedly elevated in CRC tissues and cells compared with that in normal colorectal tissues and cells. High expression of SPP-1 was associated with advanced clinical process and low overall survival rate in patients with CRC. Besides, SPP-1 could interact with β-catenin and positively regulated β-catenin protein expression, and enhanced its nuclear accumulation. Moreover, SPP-1-upregulation significantly enhanced cell proliferation and in vivo tumor formation ability, and reduced apoptosis, whereas these effects were all abolished when β-catenin was silenced. Overall, the present study revealed that SPP-1 promoted the progression of CRC in a β-catenin-dependent manner.A growing body of evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in the chemoresistance of human cancers. However, the molecular mechanisms underlying the functions of certain lncRNAs in the chemotherapeutic resistance of hepatocellular carcinoma (HCC) remain unclear. The aim of the present study was to investigate the function and potential mechanism of action of lncRNA LINC00173 in HCC cisplatin (DDP) resistance. Reverse transcription-quantitative PCR analysis indicated that LINC00173 was highly expressed in DDP-resistant HCC tissues and cell lines, and high expression levels of LINC00173 were found to be associated with poor prognosis in patients with HCC. Moreover, LINC00173-knockdown improved the DDP sensitivity of DDP-resistant HCC cells. A luciferase reporter assay also demonstrated that microRNA (miR)-641 was a direct target of LINC00173. miR-641 inhibition restored the promoting effect of LINC00173 knockdown on DDP sensitivity in HCC cells. Furthermore, RAB14 was identified as a target of miR-641, and RAB14 overexpression restrained the inducing effect of LINC00173 knockdown on HCC cell DDP sensitivity. The findings of the present study demonstrated that LINC00173 increased DDP resistance in HCC via the miR-641/RAB14 axis, which may represent a promising therapeutic strategy for HCC.Long non-coding RNAs (lncRNAs) may participate in biological regulatory mechanisms of tumors. The aim of the present study was to uncover the molecular mechanism of the lncRNA LINC00052 in the tumorigenesis of breast cancer (BC). LINC00052 expression in BC tissues and cell lines was detected by reverse transcription-quantitative PCR analysis. The Cell Counting Kit-8, proliferation, Transwell and wound healing assays were employed to confirm the effect of LINC00052 on cell proliferation, migration and invasion. The cell localization of LINC00052 was estimated by cytoplasmic nuclear separation assay. Finally, the potential regulatory mechanism of LINC00052 in BC was detected by western blot analysis. The expression levels of LINC00052 were found to be significantly higher in BC tissues compared with those in the adjacent normal tissues. Downregulation of LINC00052 expression in vitro significantly suppressed the proliferation, migration and invasion of BC cells. LINC00052 was mainly expressed in the cytoplasm and was considered to bind with microRNA (miR)-145-5p based on various databases. Notably, the high expression levels of LINC00052 led to the low expression levels of miR-145-5p and high expression levels of TGF-β receptor II (TGFBR2). In conclusion, the findings of the present study demonstrated that LINC00052 may sponge miR-145-5p to upregulate TGFBR2 expression in order to promote the proliferation and metastasis of BC cells. Therefore, LINC00052 may be an effective potential target for the diagnosis and treatment of BC.Rheumatoid arthritis (RA) is a common systemic, inflammatory and autoimmune disorder. MicroRNAs (miRs) are strongly associated with the initiation and progression of RA. However, the functions and mechanisms underlying miR-23 in RA are not completely understood. Therefore, the present study aimed to investigate the molecular mechanisms underlying miR-23 in RA. A bioinformatics tool (StarBase) and a wide range of experimental assays, including reverse transcription-quantitative PCR, western blotting, luciferase reporter assays and ELISAs, were performed to investigate the biological role of miR-23 in RA. The results indicated that miR-23 was downregulated and chemokine C-X-C motif ligand 12 (CXCL12) was upregulated in RA samples compared with healthy samples. Furthermore, miR-23 overexpression suppressed inflammation via reducing TNF-α, IL-1β and IL-8 expression levels compared with the NC mimic group. Regarding the underlying mechanism, compared with NC mimic, miR-23 mimic decreased CXCL12 mRNA expression by binding to its 3'-untranslated region.

Autoři článku: Ralstonmcdaniel1838 (James Buchanan)