Rahbekwolf6066
The concept of resonance in nonlinear systems is crucial and traditionally refers to a specific realization of maximum response provoked by a particular external perturbation. Depending on the system and the nature of perturbation, many different resonance types have been identified in various fields of science. A prominent example is in neuroscience where it has been widely accepted that a neural system may exhibit resonances at microscopic, mesoscopic and macroscopic scales and benefit from such resonances in various tasks. In this context, the two well-known forms are stochastic and vibrational resonance phenomena which manifest that detection and propagation of a feeble information signal in neural structures can be enhanced by additional perturbations via these two resonance mechanisms. Given the importance of network architecture in proper functioning of the nervous system, we here present a review of recent studies on stochastic and vibrational resonance phenomena in neuronal media, focusing mainly on their emergence in complex networks of neurons as well as in simple network structures that represent local behaviours of neuron communities. From this perspective, we aim to provide a secure guide by including theoretical and experimental approaches that analyse in detail possible reasons and necessary conditions for the appearance of stochastic resonance and vibrational resonance in neural systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.Chaotic resonance (CR) is a new phenomenon induced by an intermediate level of chaotic signal intensity in neuronal systems. In the current study, we investigated the effects of autapse on the CR phenomenon in single neurons and small-world (SW) neuronal networks. In single neurons, we assume that the neuron has only one autapse modelled as electrical, excitatory chemical and inhibitory chemical synapse, respectively. Then, we analysed the effects of each one on the CR, separately. Obtained results revealed that, regardless of its type, autapse significantly increases the chaotic resonance of the appropriate autaptic parameter's values. It is also observed that, at the optimal chaotic current intensity, the multiple CR emerges depending on autaptic time delay for all the autapse types when the autaptic delay time or its integer multiples match the half period or period of the weak signal. In SW networks, we investigated the effects of chaotic activity on the prorogation of pacemaker activity, where pacemaker neurons have different kinds of autapse as considered in single neuron cases. Obtained results revealed that excitatory and electrical autapses prominently increase the prorogation of pacemaker activity, whereas inhibitory autapse reduces or does not change it. Also, the best propagation was obtained when the autapse was excitatory. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.We consider vibration devices that consist of softly vibration-isolated rigid bodies subjected to vibrations transmitted by means of inertial vibration exciters (unbalanced rotors) driven into rotation by electric motors. Typically, when designing such devices, it is assumed that the rotors rotate uniformly with a certain circular frequency and the body performs small harmonic oscillations with the same frequency. The present work, using a second-order approximation of their nonlinear coupled differential equations, shows that the rotor and the oscillating body keep exchanging energy. At the same time, the angular velocity of the rotor oscillates with the working frequency as well as with its multiple frequencies during each revolution. As a result, the acceleration of the oscillating body also acquires harmonics with multiple frequencies. This may cause both unwanted and beneficial resonance phenomena. We obtain formulae describing the magnitudes of these ripples. We show that the magnitude of oscillations of the angular frequency can also be estimated using energy considerations. Such estimates are provided for the three most common schemes of dynamic devices. Available experimental data confirm the main conclusions of the theory. Simvastatin chemical structure We discuss both the harmful effects of these phenomena as well as their possible applications. The latter include design of bi-harmonic vibration exciters and exciters based on vibrational resonance. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.Galloping is an aeroelastic instability which incites oscillatory motion of elastic structures when subjected to an incident flow. Because galloping is often detrimental to the integrity of the structure, many research studies have focused on investigating methodologies to suppress these oscillations. These include using passive energy sinks, altering the surface characteristics of the structure, actively changing the shape of the boundary layer through momentum injection and using feedback control algorithms. In this paper, we demonstrate that the critical flow speed at which galloping is activated can be substantially increased by subjecting the galloping structure to a high-frequency non-resonant base excitation. The average effect of the high-frequency excitation is to produce additional linear damping in the slow response which serves to suppress the galloping instability. We study this approach theoretically and demonstrate its effectiveness using experimental tests performed on a galloping cantilevered structure. It is demonstrated that the galloping speed can be tripled in some experimental cases. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.Energy harvesting of ambient vibrations using a combination of a mechanical structure (oscillator) and an electrical transducer has become a valuable technique for powering small wireless sensors. Bistable mechanical oscillators have recently attracted the attention of researchers as they can be used to harvest energy within a wider band of frequencies. In this study, the response of a bistable harvester to different forms of ambient vibration is analysed. In particular, harmonic noise, which has a narrow spectrum, similarly to harmonic signals, yet is stochastic, like broad-spectrum white noise, is considered. Links between bistable harvester responses and stochastic and vibrational resonance are explored. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.Recent findings have revealed that not only neurons but also astrocytes, a special type of glial cells, are major players of neuronal information processing. It is now widely accepted that they contribute to the regulation of their microenvironment by cross-talking with neurons via gliotransmitters. In this context, we here study the phenomenon of vibrational resonance in neurons by considering their interaction with astrocytes. Our analysis of a neuron-astrocyte pair reveals that intracellular dynamics of astrocytes can induce a double vibrational resonance effect in the weak signal detection performance of a neuron, exhibiting two distinct wells centred at different high-frequency driving amplitudes. We also identify the underlying mechanism of this behaviour, showing that the interaction of widely separated time scales of neurons, astrocytes and driving signals is the key factor for the emergence and control of double vibrational resonance. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.In this paper, we first propose a brief overview of nonlinear resonance applications in the context of image processing. Next, we introduce a threshold detector based on these resonance properties to investigate the perception of subthreshold noisy images. By considering a random perturbation, we revisit the well-known stochastic resonance (SR) detector whose best performances are achieved when the noise intensity is tuned to an optimal value. We then introduce a vibrational resonance detector by replacing the noisy perturbation with a spatial high-frequency signal. To enhance the image perception through this detector, it is shown that the noise level of the input images must be lower than the optimal noise value of the SR-based detector. Under these conditions, considering the same noise level for both detectors, we establish that the vibrational resonance (VR)-based detector significantly outperforms the SR-based detector in terms of image perception. Moreover, we show that whatever the perturbation amplitude, the best perception through the VR detector is ensured when the perturbation frequency exceeds the image size. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.Many biological systems possess confined structures, which produce novel influences on the dynamics. Here, stochastic resonance (SR) in a triple cavity that consists of three units and is subjected to noise, periodic force and vertical constance force is studied, by calculating the spectral amplification η numerically. Meanwhile, SR in the given triple cavity and differences from other structures are explored. First, it is found that the cavity parameters can eliminate or regulate the maximum of η and the noise intensity that induces this maximum. Second, compared to a double cavity with similar maximum/minimum widths and distances between two maximum widths as the triple cavity, η in the triple one shows a larger maximum. Next, the conversion of the natural boundary in the pure potential to the reflection boundary in the triple cavity will create the necessity of a vertical force to induce SR and lead to a decrease in the maximum of η. In addition, η monotonically decreases with the increase of the vertical force and frequency of the periodic force, while it presents several trends when increasing the periodic force's amplitude for different noise intensities. Finally, our studies are extended to the impact of fractional Gaussian noise excitations. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.In 2021, the American Heart Association celebrates its 40th anniversary in advocacy. This policy statement details the arc of the organization's nonpartisan, evidence-based, equity-focused approach to advocating for public policy change, highlighting key milestones and describing the core components of the association's capacity and activity at all levels of government. This policy statement presents a vision and strategic imperative for future American Heart Association advocacy efforts to inform and influence policy changes that advance equitable, impactful societal solutions that transform and improve cardiovascular health for everyone. The American Heart Association maintains accountability by measuring and evaluating the totality of this work and its impact on equitable health outcomes. The American Heart Association will apply these lessons to constantly refine its own strategic policy focus and advocacy efforts. The association will also serve as a resource and catalyst to other organizations working to engage and educate policy makers, partners, the media, and funders about the important role and contribution of public policy change to achieve shared goals.