Pughcraft2204

Z Iurium Wiki

5). This set of new insights make this dye useful as a potential "off-on-off" pH-responsive fluorescent probe for biological applications. A pyranoxanthylium dye was developed and revealed a selective fluorescence emission between 5  less then  pH  less then  9, being maximum at pH 7.5, which make it very interesting as a pH-responsive "off-on-off" fluorescent probe for biomedical applications.A novel amphiphilic photosensitizing agent based on a tricationic fullerene C60 (DMC603+) was efficiently synthesized from its non-charged analogue MMC60. These fullerenes presented strong UV absorptions, with a broad range of less intense absorption up to 710 nm. Both compounds showed low fluorescence emission and were able to photosensitize the production of reactive oxygen species. Furthermore, photodecomposition of L-tryptophan sensitized by both fullerenes indicated an involvement of type II pathway. DMC603+ was an effective agent to produce the photodynamic inactivation (PDI) of Staphylococcus aureus, Escherichia coli and Candida albicans. Mechanistic insight indicated that the photodynamic action sensitized by DMC603+ was mainly mediated by both photoprocesses in bacteria, while a greater preponderance of the type II pathway was found in C. albicans. In presence of potassium iodide, a potentiation of PDI was observed due to the formation of reactive iodine species. Therefore, the amphiphilic DMC603+ can be used as an effective potential broad-spectrum antimicrobial photosensitizer.Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.Bryophytes, including Sphagnum, are common species in alpine and boreal regions especially on mires, where full sunlight exposes the plants to the damaging effects of UV radiation. Sphagnum species containing UV-protecting compounds might offer a biomass source for nature-based sunscreens to replace the synthetic ones. In this study, potential compounds and those linked in cell wall structures were obtained by using methanol and alkali extractions and the UV absorption of these extracts from three common Sphagnum moss species Sphagnum magellanicum, Sphagnum fuscum and Sphagnum fallax collected in spring and autumn from western Finland are described. Absorption spectrum screening (200-900 nm) and luminescent biosensor (Escherichia coli DPD2794) methodology were used to examine and compare the protection against UV radiation. Additionally, the antioxidant potential was evaluated using hydrogen peroxide scavenging (SCAV), oxygen radical absorbance capacity (ORAC) and ferric reducing absorbance capacity (FRAP). Total phenolic content was also determined using the Folin-Ciocalteu method. The results showed that methanol extractable compounds gave higher UV absorption with the used methods. Sphagnum fallax appeared to give the highest absorption in UV-B and UV-A wavelengths. In all assays except the SCAV test, the methanol extracts of Sphagnum samples collected in autumn indicated the highest antioxidant capacity and polyphenol content. Sphagnum fuscum implied the highest antioxidant capacity and phenolic content. There was low antioxidant and UV absorption provided by the alkali extracts of these three species.A new chromophore, 2-(4-nitrophenyl)-1H-indole (NPI), was synthesized as a potential photolabile protecting group. Caged benzoic acids featuring the NPI chromophore were synthesized as model compounds. Benzoic acid was released in moderate yields (~ 40-60%) upon photolysis of the caged benzoic acids without any additional chemical reagents. Interestingly, an aldehyde, 1-(5-(1-formyl-1H-indol-2-yl)-2-nitrophenyl)ethyl benzoate, was isolated in ≈ 20% together with benzoic acid (≈ 40%) in photolysis of a caged benzoic acid, 2-(2-(3-(1-(benzoyloxy)ethyl)-4-nitrophenyl)-1H-indol-1-yl)acetic acid. The functional group, CH2COOH, at the indole nitrogen was transformed into the aldehyde group, CHO, under photolysis conditions in air. The similar photochemical transformation was observed in the photolysis of 2-(2-(4-nitrophenyl)-1H-indol-1-yl)acetic acid, in which the benzoate group is not attached at the nitrophenyl ring. Products analysis, transient absorption spectroscopy, and computational study suggested that intramolecular electron transfer is key for the elimination of CO2 and absorption of O2 for the formation of the aldehyde. selleck compound The artificial breathing-type reaction can apply to transition metal-free oxidation of amino acids under mild conditions.

Autoři článku: Pughcraft2204 (Bentley Heide)