Puggaardcopeland6386
Astaxanthin (Axn), a common aquatic feed additive, can enhance immunity, improve the antioxidant capacity of the crustacean and then improve the anti-stress ability of crustaceans. Exopalaemon carinicauda (E. carinicauda) is an economically important fishery species in China that has been found that dietary Axn can significantly increase ACP and AKP compared to a control diet for shrimp hepatopancreas in this study. RNA-sequencing and comparative transcriptomic analyses were utilized to explore changes in E. carinicauda gene expression following Axn feeding. Differential gene expression analyses comparing the control and Axn groups identified 631 transcripts that were differentially expressed following Axn feeding, of which 314 and 317 were respectively upregulated and downregulated. Functional enrichment analyses of these genes revealed their enrichment in 22 Gene Ontology categories and 11 KEGG pathways. In the GO and KEGG enrichment analysis, it was found that dietary astaxanthin can regulate the gene expression level of adult E. carinicauda. Many of the signal pathways enriched by these genes are related to immunity, apoptosis and anti-stress. In addition, through KEGG enrichment analysis, it was found that dietary Axn could also regulate the amino acid metabolism of hepatopancreas of adult E. carinicauda. The comprehensive comparative transcriptomic analysis showed that Axn could improve the hepatopancreatic immunity and anti-apoptosis ability of adult E. carinicauda.Bisphenol A (BPA), an environmental pollutant, can cause multiple organ tissue damage by inducing oxidative stress. Cineole (CIN) is a terpene oxide existing in a variety of plant essential oils, which has anti-inflammatory, analgesic, and antioxidant effects. This study examined the effects of 200 nM BPA and 20 μM CIN on apoptosis, autophagy, and immunology in grass carp hepatocytes (L8824). The treatments were categorized as NC, CIN, BPA + CIN, and BPA. The findings demonstrated that BPA exposure could increase ROS levels and oxidative stress-related indicators, decrease the expression of the Nrf2/keap1 pathway and the Wnt/β-catenin pathway, increase the expression of genes involved in the apoptotic pathway (Bax and Caspase3), and decrease the expression of the anti-apoptotic gene Bcl-2 by lowering mitochondrial membrane potential. BPA also reduced the expression of genes linked to autophagy (ATG5, Beclin1, LC3). Changes in immunological function after BPA exposure were also shown by changes in the amounts of antimicrobial peptides (HEPC, β-defensin, LEAP2) and cytokines (INF-γ, IL-1β, IL-2, and TNF-α). After the co-treatment of CIN and BPA, CIN can inhibit BPA-induced apoptosis and recover from autophagy and immune function to a certain extent by binding to keap1 to exert an anti-oxidative regulatory effect of Nrf2 incorporation into the nucleus. Molecular docking provides strong evidence for the interaction of CIN ligands with keap1 receptors. Therefore, these results indicated that CIN could inhibit BPA-induced apoptosis, autophagy inhibition and immunosuppression in grass carp hepatocytes by regulating the Wnt/β-catenin pathway with Nrf2/keap1/ROS. This study provided further information to the risk assessment of the neuroendocrine disruptor BPA on aquatic organisms and offered suggestions and resources for further research into the function of natural extracts in the body's detoxification process.Resistance to cancer therapeutics represents a leading cause of mortality and is particularly important in cancers, such as triple negative breast cancer, for which no targeted therapy is available, as these are only treated with traditional chemotherapeutics. Cancer, as well as bacterial, drug resistance can be intrinsic, acquired or adaptive. Adaptive cancer drug resistance is gaining attention as a mechanism for the generation of long-term drug resistance as is the case with bacterial antibiotic resistance. We have used a cellular model of triple negative breast cancer (CAL51) and its drug resistance derivative (CALDOX) to gain insight into genome-wide expression changes associated with long-term doxorubicin (a widely used anthracycline for cancer treatment) resistance and doxorubicin-induced stress. Previous work indicates that both naïve and resistance cells have a functional p53-p21 axis controlling cell cycle at G1, although this is not a driver for drug resistance, but down-regulation of TOP2A (topoisert to its original state upon withdrawal of the stressor, previous experimental data indicates that the p53-p21 axis is not responsible for doxorubicin resistance. Importantly, TOP2A is not responsive to doxorubicin treatment and thus absent in both drug stress signatures. This indicates that during the generation of doxorubicin resistance, cells acquire genetic changes likely to be random, leading to down regulation of TOP2A, but selected during the generation of cells due to the presence of drug in the culture medium. This poses a considerable constraint for the development of strategies aimed at avoiding the emergence of drug resistance in the clinic.By the end of December 2019 new corona virus began to spread from Wuhan, China and caused a worldwide pandemic. COVID-19 deaths and prevalence represented sex discrepant patterns with higher rate of deaths and infection in males than females which could be justified by androgen-mediated mechanisms. This review aimed to assess the role of androgens in COVID-19 severity and mortality. Androgens increase expressions of Type II transmembrane Serine Protease (TMPRSS2) and Angiotensin Converting Enzyme 2 (ACE2), which both facilitate new corona virus entry into host cell and their expression is higher in young males than females. According to observational studies, prevalence of COVID-19 infections and deaths was more in androgenic alopecic patients than patients without androgenic alopecia. Selleck Mito-TEMPO The COVID-19 mortality rates in aged men (>60 years) were substantially higher than aged females and even young males caused by high inflammatory activities such as cytokine storm due to hypogonadism in this population. Use of anti-androgen and TMPRSS2 inhibitor drugs considerably modified COVID-19 symptoms. Androgen deprivation therapy also improved COVID-19 symptoms in prostate cancer overall the role of androgens in severity of COVID-19 and its associated mortality seemed to be very important. So, more studies in variety of populations are required to define the absolute role of androgens.Diagnosing overtraining syndrome is challenging and it is often correlated with other diseases, especially those related to low energy availability. Therefore, we investigated the prevalence of overtraining syndrome-like symptoms and correlative factors in 389 female and 572 male national-level high school track and field athletes. They were asked to complete a survey regarding their history of overtraining syndrome-like symptoms, injuries, and diseases. The survey results revealed that 13.4% (52/389) of female and 13.3% (76/572) of male athletes had a history of overtraining syndrome-like symptoms. Logistic regression analysis showed that training hours per day (odds ratio, 1.74; 95% confidence interval, 1.12-2.71) was an associated factor in female athletes, while rest days per week (odds ratio, 0.61; 95% confidence interval, 0.37-1.00), skipping meals (odds ratio, 3.73; 95% confidence interval, 1.50-9.29), and having snacks/light meals on a regular basis (odds ratio, 0.46; 95% confidence interval, 0.26-0.83) were the associated factors in male athletes. In conclusion, athletes with overtraining syndrome-like symptoms may be prone to injuries and diseases. Hence, although overtraining syndrome is difficult to diagnose, further attention should be paid to minimize overtraining syndrome-related risks.In the clinic, drug-resistant Staphylococcus aureus (S. aureus) is the most common suppurative infection pathogen in humans. It can cause local infections in humans and animals, such as pneumonia, mastitis, and other systemic illnesses. At present, the detection of drug-resistant S. aureus includes traditional isolation by culture and antimicrobial susceptibility tests. However, these methods are complicated in experimental design, specialized in operation and time consuming. Therefore, a rapid and accurate drug-resistant S. aureus detection technology is urgently needed. In this study, we combined duplex pairs of fluorescent probes with recombinase polymerase amplification (RPA) to realize the simultaneous detection of two resistance genes in drug-resistant S. aureus. The method shows low detection limit, detecting 20 copies within 10 min. The analytical specificity of this method was evaluated with several related drug-resistant bacterial strains (Non-resistant S. aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae), and the positive signal was only observed with drug-resistant S. aureus. In addition, the clinical suitability of this method was verified by 30 clinical isolates. Compared with qPCR, the coincidence rate of drug resistance genes were 100% (mecA) and 96.7% (ermA), respectively. These results show that the duplex real-time fluorescent RPA assay is a rapid, low detection limit and specific detection of mecA and ermA genes in isolates of drug-resistant S. aureus.Major depressive disorder (MDD) is a common mental disease with high morbidity, recurrence and mortality and is a serious global health problem.Aerobic exercise produces beneficial effects on depression and associated comorbidities.Swimming exercise with high motor complexity may be particularly beneficial for patients with depression.We hypothesized that swimming exercise improves various types of depression-like behaviors and these effects are related to improved immune and inflammatory response by regulating microbiota-gut-brain axis.We established the Lipopolysaccharides (LPS)/Chronic unpredictable stress (CUS) mice model of depression. The forced swimming test (FST) and tail suspension test (TST) were used as predictive animal models of antidepressant-like activity.Swimming exercise significantly decreased the duration of immobility in FST and TST.We found that swimming exercise could significantly decrease the levels of pro-inflammatory cytokines in the central nervous system (CNS). Shifts in the composition of the gut microbiota were significant in depression model induced by LPS/CUS, notably as decreases in lactobacilli and increases in escherichia coli (E. coli), which were reversed byswimming exercise. Current study indicated that swimming exercise has huge potential for antidepressant therapy, and gut microbiotaplays an important role inregulating inflammation. We are pleased that current can study reveal a potentially promising method with less adverse reaction for combating depression and open up an important new area for future research.
To analyze the outcomes of salvage intraarterial chemotherapy (IAC) for recurrent or persistent intraocular retinoblastoma after failure with other treatment modalities.
Retrospective study.
Twenty-four eyes of 23 patients.
Intraarterial chemotherapy.
Globe salvage, metastasis, and death.
The mean age at the time of salvage IAC was 41 months (median, 36 months; range, 14-86 months). All patients (n= 23) received IV chemotherapy (IVC) as the primary treatment. The mean number of IVC cycles before salvage IAC was 10 (median, 12; range, 6-18). The indications for salvage IAC were tumor recurrence (n= 17; 71%) or persistent tumor (n= 7; 29%) post-IVC. The mean number of salvage IAC cycles was 3 (median, 3; range, 1-6). Of 24 eyes, 17 eyes (71%) achieved tumor regression with salvage IAC, whereas 7 (29%) eyes displayed poor response. Of these 17 eyes with initial tumor regression, 9 (38%) eyes sustained good response, whereas 8 (33%) eyes displayed tumor recurrence over a mean follow-up period of 21 months (median, 21 months; range, 6-44 months).