Princekaspersen4575
A novel Schiff base compound named as phenylmethanaminium (E)-4-((benzylimino)methyl)benzoate C7H10N+. C15H12NO2 - (A) is synthesized by the chemical reaction of benzylamine and 4-carboxybenzaldehyde in ethanol, and the structure of the titled compound is verified using the single-crystal X-ray diffraction technique. Structural investigation inferred that the crystal packing is mainly stabilized by N-H···O and comparatively weak C-H···O bonding between the cation and anion and further stabilized by weak C-H···π and C-O···π interactions. Hirshfeld surface analysis is employed to explore the noncovalent interactions that are responsible for crystal packing quantitatively. Furthermore, we have used state-of-the-art quantum chemical calculations to get comprehensive insights into the structure-optoelectronic property relationship for the entitled compound. The molecular geometry of compound A is optimized at the M06/6-311G* level of theory. The linear polarizability, third-order nonlinear optical (NLO) polarizability, total and partial density of states, and UV-visible spectrum are calculated through quantum chemical calculations. We believe that compound A is not only a new addition to crystallographic data but also possesses good optical and NLO properties for its potential use in lasers and frequency-converting applications.The complex process of nanoparticle formation in an aqueous solution is governed by kinetics and thermodynamic factors. This paper describes a room-temperature growth kinetic study and evaluation of thermodynamic activation parameters of monodispersed silver nanoparticles (AgNPs) synthesized in alkaline medium by chemical reduction method using AgNO3 as a source of Ag+ ions and tannic acid (TA) as a reductant (reducing agent) as well as a capping or stabilizing agent in the absence of any other external stabilizer. A simple and conveniently handled reaction process was monitored spectrophotometrically to study the growth kinetics in an aqueous solution as a function of the concentration of silver ion, hydroxide ion, and TA, respectively. The neutral nucleophilic group donates the electron density via a lone pair of electrons to Ag+ ions for the reduction process, i.e., for the nucleation of AgNPs colloid. Also, a few silver ions form a silver oxide, which also facilitates the nucleation center to enhance the growth of AgNPs colloid. this website The decrease and increase in rate constant on varying the TA concentration showed its adsorption onto the surface of metallic AgNPs and stabilized by polygalloyl units of TA and were the main elements to control the growth kinetics. Consequently, stabilized TA-mediated AgNPs are formed using the electron donated by quinone form of TA followed by a pseudo-first-order reaction. Apart from this, nanoparticles formed were characterized using UV-visible spectrophotometry, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and powder X-ray diffraction techniques to confirm its formation during the present kinetic study.Hot solvent-assisted gravity drainage (HS-AGD) is an effective way to exploit oil sands and heavy oil both economically and environmentally. The visualized microscopic seepage experiments and two-dimensional (2-D) macroscopic simulation experiments of HS-AGD are carried out, and the results are compared with that of steam-assisted gravity drainage (SAGD) in detail for the first time in order to compare their development effects of the oil sand reservoir. MacKay River oil sand bitumen is taken as an oil sample in the experiments, with n-hexane as the solvent. Micro seepage characteristics of the hot solvent and steam and the remaining oil distribution of the solvent and steam drive are investigated through microseepage experiments. The expanding process of the solvent/steam chamber and production performance of HS-SAGD and SAGD are investigated through macrosimulation experiments. The study found that the sweep efficiency of hot solvent is higher than that of steam at the same temperature due to the small inte paper aims to reveal the oil drainage mechanism of HS-AGD and SAGD from the macroscopic and microscopic view and to provide theoretical guidance for the field application of this technology.Removal of nitrogen and sulfur compounds from diesel fuel is essential to comply with the increasing stringent regulations. The extraction capability of two deep eutectic solvents, namely, tetrabutylphosphoniumbromide/ethylene glycol, TBPBr/EG, with molar ratio 12, and tetrabutylammoniumbromide/ethylene glycol, TBABr/EG, with molar ratio 12, in simultaneously extracting basic nitrogen, nonbasic nitrogen, and sulfur compounds represented by pyridine, indoline, and dibenzothiophene (DBT) from n-hexadecane, was investigated. Two pseudo-ternary phase diagrams of (TBPBr/EG + (pyridine + indoline + DBT) + n-hexadecane) and (TBABr/EG + (pyridine + indoline + DBT) + n-hexadecane) were predicted via a conductor-like screening model for real solvents (COSMO-RS) and experimentally validated at 298.15 K and 1 atm. Both solvents showed zero cross-contamination, indicating the suitability of all solvents as extraction solvents. The tie lines obtained for both COSMO-RS and experiments were in agreement and had root-mean-square deviation (RMSD) values of less than 5% for both systems. Selectivity and distribution ratio calculated indicates the suitability of both solvents in extracting sulfur and nitrogen compounds from hexadecane. Two new parameters, namely, extraction efficiency, α, and extraction affinity, β, were introduced to ease the performance comparison of both solvents. TBPBr/EG shows a slightly better performance than TBABr/EG. Other than that, the presence of multiple solutes shows low effects on the performance of these solvents.Low-cost catalysts with high activity and durability are necessary to achieve efficient large-scale energy conversion in photoelectrochemical cell (PEC) systems. An additional factor that governs the construction of photoelectrodes for PECs is the spatial control of the catalysts for efficient utilization of photogenerated charge carriers. Here, we demonstrate spatial decoupling of the light-absorbing and catalytic components in hierarchically structured Si-based photocathodes for the hydrogen evolution reaction (HER). By simply modifying a well-known metal-assisted chemical etching procedure, we fabricated a Si nanowire (NW) array-based photocathode with Ag-Pt catalysts at the base and small amounts of the Pt catalyst at the NW tips. This approach simultaneously mitigates the parasitic light absorption by the catalytic layers and recombination of charge carriers owing to the long transport distance, resulting in improved photoelectrochemical HER performance under simulated AM 1.5G illumination.Carbon-alumina composites are prepared for the efficient removal of Cr(VI) from wastewater. Pristine and acid-treated alumina dross (AD and AAD) are copyrolyzed with pine sawdust to form the respective composites, ADPC and AADPC. Excellent absorption properties with Cr(VI) removal efficiency of 95.08% are demonstrated at 60 °C for an initial concentration of 6 μg/mL. The composites combine the merits of char, which provides a high surface-to-volume ratio with abundant functional groups on the surface, and alumina, which provides metal ions for coprecipitation. Carbon structures of pine, char, and composite were analyzed semiquantitatively using 13C NMR by a curve-fitting method. Cr(VI) adsorption is accurately described with chemisorption by the Langmuir isotherm model and a pseudo-second-order kinetic model. The results show that AADPC has more alcohol hydroxyl groups substituted to glucosyl units in amorphous cellulose assigned to the peak at 80 ppm and hemicellulose assigned to peaks at 97 and 101 ppm. Also, it has more phenolic groups in lignin distributed at syringyl units assigned to peaks at 129 and 146 ppm. These oxygen-containing functional groups have a significant influence on Cr(VI) adsorption and reduction to Cr(III) governed by the mechanisms of diffusion, adsorption, complexation, reduction, and coprecipitation. The results of this work provide a new direction for the reuse of biomass and industrial solid wastes to fabricate higher value-added products, i.e., adsorption materials for Cr(VI) removal and stabilization.Real-time (quantitative) polymerase chain reaction (qPCR) has been widely applied in molecular diagnostics due to its immense sensitivity and specificity. qPCR multiplexing, based either on fluorescent probes or intercalating dyes, greatly expanded PCR capability due to the concurrent amplification of several deoxyribonucleic acid sequences. However, probe-based multiplexing requires multiple fluorescent channels, while intercalating dye-based multiplexing needs primers to be designed for amplicons having different melting temperatures. Here, we report a single fluorescent channel-based qPCR duplexing method on a model containing the sequence of chromosomes 21 (Chr21) and 18 (Chr18). We combined nonspecific intercalating dye EvaGreen with a 6-carboxyfluorescein (FAM) probe specific to either Chr21 or Chr18. The copy number (cn) of the target linked to the FAM probe could be determined in the entire tested range from the denaturation curve, while the cn of the other one was determined from the difference between the denaturation and elongation curves. We recorded the amplitude of fluorescence at the end of denaturation and elongation steps, thus getting statistical data set to determine the limit of the proposed method in detail in terms of detectable concentration ratios of both targets. The proposed method eliminated the fluorescence overspilling that happened in probe-based qPCR multiplexing and determined the specificity of the PCR product via melting curve analysis. Additionally, we performed and verified our method using a commercial thermal cycler instead of a self-developed system, making it more generally applicable for researchers. This quantitative single-channel duplexing method is an economical substitute for a conventional rather expensive probe-based qPCR requiring different color probes and hardware capable of processing these fluorescent signals.The phase composition and distribution characteristics have been obtained from two mammoth ivory samples with typical blue and yellowish-brown outer layers. The results reveal that hydroxyapatite, newberyite, organic matter, and quartz exist in all structures of mammoth ivory. Vivianite and santabarbaraite mainly contribute to the blue and yellowish-brown oxide layers of mammoth ivory, respectively. Meanwhile, metavivianite also occurs and partly influences the appearance of oxide layers. Vivianite is a common and complex product that can be formed by the interaction of gradually infiltrated Fe2+ and the original PO4 3- in mammoth ivory. At the later stage, vivianite can be oxidized into metavivianite and santabarbaraite. As a result, mammoth tusks present dark bluish-green and yellowish-brown appearances. The multi-colored oxide layers are formed by different contents of vivianite and its oxidation products, which also provides valuable information on the relative burial intensity and time in different structures.