Povlsenvoss0770

Z Iurium Wiki

We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and physicochemical properties of HNT-SiO2-PEI/PVC membranes were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflectance (ATR)-FTIR. Results of these analyses indicated that the overall porosity and mean pore size of nanocomposite membranes were enhanced, but the surface roughness was reduced. Additionally, surface hydrophilicity and flexibility of the original PVC membranes were significantly improved by incorporating HNT-SiO2-PEI nanoparticles. Based on pure water permeability and bovine serum albumin (BSA)/dye rejection tests, the highest nanoparticle-embedded membrane performance was observed at 2 weight percent (wt%) of HNT-SiO2-PEI. The nanocomposite incorporation in the PVC membranes further improved its antifouling performance and flux recovery ratio (96.8%). Notably, dye separation performance increased up to 99.97%. Overall, hydrophobic PVC membranes were successfully modified by incorporating HNT-SiO2-PEI nanomaterial and better-quality wastewater treatment performance was obtained.Viruses are extremely abundant and ubiquitous in soil, and significantly contribute to various terrestrial ecosystem processes such as biogeochemical nutrient cycling, microbiome regulation and community assembly, and host evolutionary dynamics. Despite their numerous dominance and functional importance, understanding soil viral ecology is a formidable challenge, because of the technological challenges to characterize the abundance, diversity and community compositions of viruses, and their interactions with other organisms in the complex soil environment. Viruses may engage in a myriad of biological interactions within soil food webs across a broad range of spatiotemporal scales and are exposed to various biotic and abiotic disturbances. Current studies on the soil viromes, however, often describe the complexity of their tremendous diversity, but lack of exploring their potential ecological roles. In this article, we summarized the major methods to decipher the ecology of soil viruses, discussed biotic and abiotic factors and global change factors that shape the diversity and composition of soil viromes, and the ecological roles of soil viruses. We also proposed a new framework to understand the ecological complexity of viruses from micro to macro ecosystem scales and to predict and unravel their activities in terrestrial ecosystems.Global microplastic (MP) contamination and the effects on the environment are well described. However, the potential for MP consumption to affect human health remains controversial. Mice consuming ≈80 μg/kg/day of 1 μm polystyrene MPs via their drinking water showed no weight loss, nor were MPs detected in internal organs. The microbiome was also not significantly changed. MP consumption did lead to small transcriptional changes in the colon suggesting plasma membrane perturbations and mild inflammation. Mice were challenged with the arthritogenic chikungunya virus, with MP consumption leading to a significantly prolonged arthritic foot swelling that was associated with elevated Th1, NK cell and neutrophil signatures. Immunohistochemistry also showed a significant increase in the ratio of neutrophils to monocyte/macrophages. The picture that emerges is reminiscent of enteropathic arthritis, whereby perturbations in the colon are thought to activate innate lymphoid cells that can inter alia migrate to joint tissues to promote inflammation.In this study, a new catalyst was fabricated by pyrolysis under nitrogen atmosphere with MIL-53(Fe) as the precursor, and was applied to catalyze Fenton-like process. Effects of calcination temperature and pH on decontamination performance, and stability of materials were investigated. Under optimal conditions (calcination temperature of 500 °C and pH of 5.0), the new Fenton-like system remained low iron leaching, and achieved high pseudo-first-order rate constant of 0.0251 min-1 for bisphenol S (BPS) removal, which is much higher than those in MIL-53(Fe), and nano-Fe3O4 catalyzed Fenton-like systems. The superiority of the new catalyst for Fenton-like catalysis was attributed to high specific surface area, as well as formed Fe(II), coordinatively unsaturated iron center and the Fe-O/Fe-C compounds based on the analyses of characterizations. Furthermore, main active species for BPS degradation was identified as hydroxyl radicals, and total hydroxyl radical generation was determined by trapping experiments. The degradation pathways of BPS were also proposed by intermediates monitoring. Moreover, this catalyst showed good potential for practical application, according to the evaluation of reuse, different pollutants degradation, and BPS removal in real wastewater. We believe this study developed a new catalyst with high catalytic activity, high stability and wide application scope, and also sheds light on further development of metal-organic frameworks for Fenton-like catalysis.Evidence for the association between long-term exposure to ambient particulate matter components and mortality from natural causes is sparse and inconsistent. STAT3-IN-1 molecular weight We evaluated this association in six large administrative cohorts in the framework of the Effects of Low-Level Air Pollution A Study in Europe (ELAPSE) project. We analyzed data from country-wide administrative cohorts in Norway, Denmark, the Netherlands, Belgium, Switzerland and in Rome (Italy). Annual 2010 mean concentrations of copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V) and zinc (Zn) in fine particulate matter (PM2.5) were estimated using 100 × 100 m Europe-wide hybrid land use regression models assigned to the participants' residential addresses. We applied cohort-specific Cox proportional hazard models controlling for area- and individual-level covariates to evaluate associations with natural mortality. Two pollutant models adjusting for PM2.5 total mass or nitrogen dioxide (NO2) were also applied. We pooled cohort-specific estimates using a random effects meta-analysis. We included almost 27 million participants contributing more than 240 million person-years. All components except Zn were significantly associated with natural mortality [pooled Hazard Ratios (HRs) (95% CI) 1.037 (1.014, 1.060) per 5 ng/m3 Cu; 1.069 (1.031, 1.108) per 100 ng/m3 Fe; 1.039 (1.018, 1.062) per 50 ng/m3 K; 1.024 (1.006, 1.043) per 1 ng/m3 Ni; 1.036 (1.016, 1.057) per 200 ng/m3 S; 1.152 (1.048, 1.266) per 100 ng/m3 Si; 1.020 (1.006, 1.034) per 2 ng/m3 V]. Only K and Si were robust to PM2.5 or NO2 adjustment [pooled HRs (95% CI) per 50 ng/m3 in K 1.025 (1.008, 1.044), 1.020 (0.999, 1.042) and per 100 ng/m3 in Si 1.121 (1.039, 1.209), 1.068 (1.022, 1.117) adjusted for PM2.5 and NO2 correspondingly]. Our findings indicate an association of natural mortality with most components, which was reduced after adjustment for PM2.5 and especially NO2.Microplastics and veterinary antibiotics are both emerging environmental contaminants that could be co-occurrence in agricultural soils. However, it's still unclear how the microplastics affect the bioaccessibility of antibiotics in a real soil environment. An in-situ measurement using diffusive gradients in thin-films devices suitable for polar organic compounds (o-DGT) coupled with soil moisture sampling were used to reveal such effects. Sulfamethoxazole (SMX) that was selected as a representative antibiotic and polyethylene (PE) microplastic with an average diameter of 35 μm were amended to the paddy soil and saline soil for the study. The result indicated that SMX degradation in the paddy soil was higher than that in the saline soil, meanwhile, PE microplastic addition promoted SMX degradation in both soils. In the paddy soil, PE microplastic addition enhanced release of SMX from soil solid to soil solution but no effects on the bioaccessibile SMX. However, in the saline soil, the PE microplastic addition reduced both SMX in soil solution and bioaccessibile SMX significantly (p less then 0.05). The potential resupply ability of the labile SMX from soil solid to soil solution which was expressed as R value enhanced significantly in saline soil, while such a change was negligible in the paddy soil. This implied that long-term release risk of SMX in the PE microplastic contaminated saline soil could not be neglected. Therefore, co-occurrence of PE microplastic and SMX in the soils might increase uptake of SMX by biotas and such effects depended on soil properties.Shallow aquifers beneath cities are highly influenced by anthropogenic heat sources, resulting in the formation of extensive subsurface urban heat islands. In addition to anthropogenic factors, natural factors also influence the subsurface temperature. However, the effect of individual factors is difficult to capture due to high temporal dynamics in urban environments. Particularly in the case of shallow aquifers, seasonal temperature fluctuations often override the influence of existing heat sources or sinks. For the city of Munich, we identify the dominant anthropogenic and natural influences on groundwater temperature and analyse how the influences change with increasing depth in the subsurface. For this purpose, we use depth temperature profiles from 752 selected groundwater monitoring wells. Since the measurements were taken at different times, we developed a statistical approach to compensate for the different seasonal temperature influences using passive heat tracing. Further, we propose an indicator tity of heavily sealed areas and to retain open landscapes.Pastures and rangelands are a dominant portion of global agricultural land and have the potential to sequester carbon (C) in soils, mitigating climate change. Management intensive grazing (MIG), or high density grazing with rotations through paddocks with long rest periods, has been highlighted as a method of enhancing soil C in pastures by increasing forage production. However, few studies have examined the soil C storage potential of pastures under MIG in the northeastern United States, where the dairy industry comprises a large portion of agricultural use and the regional agricultural economy. Here we present a 12-year study conducted in this region using a combination of field data and the denitrification and decomposition (DNDCv9.5) model to analyze changes in soil C and nitrogen (N) over time, and the climate impacts as they relate to soil carbon dioxide (CO2) and nitrous oxide (N2O) fluxes. Field measurements showed (1) increases in soil C in grazed fields under MIG (P = 0.03) with no significant increase in hayed fields (P = 0.

Autoři článku: Povlsenvoss0770 (Vistisen Deleuran)