Poulsenobrien9572
This study was designed to investigate mast cell activation and related TLR4-NF-κB/TNF-α pathway variation in 3 and 7 days' rats intestinal I/R injury, and TXL's intervention effect. Rat intestine I/R injury was carried out using superior mesenteric artery occlusion model with 30 min ischemia followed 3 or 7 days' reperfusion. Rats were administered TXL ultrafine power of 0.4, 0.8 and 1.6g/kg/d respectively for 3 or 7 days after modeling. Mast cell activation was determined by immunofluorescent double staining. TLR4, ANGPTL4 and microRNA126 were determined by RT-PCR. PECAM-1, NF-κB p65, TNF-α and VE-Cadherin were determined by immunohistochemical staining. Intestine I/R induced massively mast cell activation and overexpressed TLR4, NF-κB, TNF-α, PECAM-1, miR126 in 3 and 7 days. VE-cadherin and ANGPTL4 expression was reduced. see more TXL treatment attenuated mast cell activation and inhibited TLR4, NF-κB, TNF-α, PECAM-1 over-expression in 3 and 7 days, protected VE-cadherin and ANGPTL4 protein. Inflammation boomed in rats' intestine I/R injury for 3 and 7 days, characterized by mast cell and related TLR4-NF-κB/TNF-α pathway activation, accompanied with endothelial barrier dysfunction and enhanced vascular permeability. TXL treatment attenuated inflammation, protected endothelial barrier function. TXL treat intestine I/R injury, according with "Treat different diseases with the same method" in TCM theory.Phytochemical investigation of the whole plant of Filago vulgaris Lam. (Asteraceae) resulted in the isolation and characterization of seven compounds, including a rare methoxylated flavonol (araneol), tetrahydrofurofuranolignans (pinoresinol and syringaresinol), p-hydroxybenzaldehyde, vanillin, vanillic acid and scopoletin. The structures of the compounds were determined by NMR and mass spectroscopy. All compounds were first obtained from this species and reported for the genus Filago. Our results demonstrate that highly methoxylated flavonols lacking substituents on ring B and lignans can be regarded as taxonomic markers for the tribe Inuleae. The lipophilic extract of F. vulgaris was found to have antiproliferative activity against HeLa cells (62.1±0.9% inhibition at 30 μ/ml), and araneol was highly effective against this tumour cell line (IC50 8.36 μ M).Acrolein is a highly toxic unsaturated aldehyde which is abundant in many circumstances. People exposed to acrolein may have significant clinical relevance in human cardiotoxicity situations. Paeoniflorin (PEF) is a bioactive glucoside isolated from the roots of Paeonia lactiflora Pall. It is reported that PEF performs a beneficial role in cardiovascular system. The aim of the current research was to evaluate the potential protective effect of PEF against acrolein-induced apoptotic damage in H9c2 cardiomyocytes. This study revealed that PEF exerted a protective effect on acrolein-induced cardiomyocyte apoptosis. Furthermore, treatment with acrolein could markedly increase the levels of reactive oxygen species (ROS) and expression of cleavage of caspase-9 and caspase-3 in H9c2 cardiomyocytes, which were significantly reversed by co-treatment with PEF (100uM). These results demonstrated that PEF protects H9c2 cardiomyocytes against acrolein-induced cardiomyocyte injury via decreasing ROS production and down regulating caspases cascade reaction, indicating that PEF is a potential therapeutic agent for cardiac toxic environmental pollutant injury.Drug abuse and impaired adaptation to stress are inter-related. Drug abuse is more potentiated upon exposure to stress and an impairment to cope with stress may lead to depression. On the other hand, use of addictive compounds increase the vulnerability to depression by inhibiting the adaptation to stress. Present study investigates relationship between behavioral tolerance to repeated restraint stress and apomorphine-induced sensitization. Apomorphine was injected either before or after the restraint stress episode, to monitor drug-induced behavioral sensitization and place preference. Apomorphine-induced sensitization and place preference were enhanced if the drug is experiencing during restraint stress. Conversely, apomorphine-induced sensitization and place preference were attenuated if the drug is experiencing after restraint stress. It shows that apomorphine, if experienced during restraint stress, produces greater sensitization Conversely, sensitization effects of apomorphine are blocked in animals receiving apomorphine after the termination of restraint stress. The results tend to show that drug of abuse may be effective for the treatment but not prevention of stress-induced depression.Paeoniflorin and amygdalin are two major active saponins constituents in some Chinese herbal formulas used for cardio-cerebrovascular diseases. However, their intestinal absorption property and metabolic characteristics have not been clarified. The aim of this work was to study the absorption property of Paeoniflorin and Amygdalin across Caco-2 cell monolayer and their metabolic characteristics on the activity of cytochrome P450 (CYP450) enzyme. The results showed that the transport amount of Paeoniflorin and Amygdalin was positively correlated with the time and concentrations, and the transport amount from AP side to BL side was higher than that from BL to AP. The absorptions of Paeoniflorin and Amygdalin were reduced by P-glycoprotein, which provided the pharmacokinetic basis for their clinical application. Furthermore, we demonstrated that Paeoniflorin and Amygdalin had obvious inhibiting effects on CYP2C9 and CYP2E1. The transports of Paeoniflorin and Amygdalin across Caco-2 cell monolayer model were deduced as the passive transport, which indicated that the present bioassay system was appropriate and reliable for the evaluation of the transport characteristics and metabolic characteristics of active ingredient groups in Bu-yang-huan-wu decoction. Moreover, this research method may also be suitable for the appropriate bioactivity and metabolic characteristics analysis of other plant extracts.This paper describes the development and validation of a high performance liquid chromatography (HPLC-UV) method for the simultaneous quantitative determination of artemether and lumefantrine in fixed dose combination tablets. Chromatographic quantitation was carried out on a C-18 column Mediterrania Sea 18 (250×4.6 mm i.d.; 5 µm particle size) using a mobile phase consisting of 8020 v/v mixture of acetonitrile and 0.05 % trifluoroacetic acid with final pH adjusted to 2.35 at flow rate of 1 ml/minute. The eluents was detected using photo diode array detector at wavelength of 210nm for artemether and 286 nm for lumefantrine. The retention times were ~5.8 mins for artemether and ~7.3 mins for lumefantrine. The newly developed method was validated and was found linear (r2 >0.99), precise (R.S.D. <2.0%), accurate, specific and robust. The artemether contents in the tablet formulation varied from 99.026 % to 99.347%, while lumefantrine contents were 99.546-99.728 %.