Portermcnamara7686
Chlamydia trachomatis is the cause of several diseases such as sexually transmitted urogenital disease and ocular trachoma. The pathogen contains a small genome yet, upon infection, expresses two enzymes with deubiquitinating activity, termed ChlaDUB1 and ChlaDUB2, presumed to have redundant deubiquitinase (DUB) function because of the similarity of the primary structure of their catalytic domain. Previous studies have led to structural characterization of the enzymatic properties of ChlaDUB1; however, ChlaDUB2 has yet to be investigated thoroughly. In this study, we investigated the deubiquitinase properties of ChlaDUB2 and compared them to those of ChlaDUB1. This revealed a distinct difference in hydrolytic activity with regard to di- and polyubiquitin chains while showing similar ability to cleave a monoubiquitin-based substrate, ubiquitin aminomethylcoumarin (Ub-AMC). ChlaDUB2 was unable to cleave a diubiquitin substrate efficiently, whereas ChlaDUB1 could rapidly hydrolyze this substrate like a prototypical prokaryotic DUB, SdeA. With polyubiquitinated green fluorescent protein substrate (GFP-Ubn), whereas ChlaDUB1 efficiently disassembled the polyubiquitin chains into the monoubiquitin product, the deubiquitination activity of ChlaDUB2, while showing depletion of the substrate, did not produce appreciable levels of the monoubiquitin product. We report the structures of a catalytic construct of ChlaDUB2 and its complex with ubiquitin propargyl amide. These structures revealed differences in residues involved in substrate recognition between the two Chlamydia DUBs. On the basis of the structures, we conclude that the distal ubiquitin binding is equivalent between the two DUBs, consistent with the Ub-AMC activity result. Therefore, the difference in activity with longer ubiquitinated substrates may be due to the differential recognition of these substrates involving additional ubiquitin binding sites.Cerium(III) triflate-catalyzed multicomponent reactions between alkynyl carboxylic acids, tert-butyl isocyanide, and organic azides have been developed. In the presence of Ce(OTf)3 (10 mol %), the cascade reaction of one molecule of alkynyl carboxylic acid with three molecules of tert-butyl isocyanides proceeds chemoselectively and regioselectively via a triple and ordered isocyanide insertion process at room temperature, and then the cesium-catalyzed [3 + 2] cycloaddtion reaction between the resulted alkynyl oxazole and organic azides was further initiated by the temperature elevation (100 °C), thereby leading to multisubstituted triazole-oxazole derivatives in practical, time-saving, one-pot operations. Furthermore, some of the synthesized target compounds showed potential anticancer activities against MGC803 (human gastric cancer cell) with IC50 values below 20 μmol L-1.Precise and automated analysis of site-specific O-glycosylation on single proteins is crucial for comprehensive characterization of some important glycoproteins, such as tumor biomarkers and recombinant drug proteins. Mass spectrometry has been proven to be a powerful technique for protein sequencing and N-glycosylation analysis. However, challenges remain in developing computational tools for intact O-glycopeptide analysis, which has greatly hindered the development of mass-spectrometry-based O-glycosylation analysis. Herein, an integrated strategy together with a dedicated automated computational tool termed AOGP was developed for intact O-glycopeptide analysis on single proteins. AOGP utilized de novo sequencing for O-glycans and a database search strategy for peptide backbones. The false discovery rate (FDR) of the identification results was controlled and validated by a mixed Gaussian distribution estimation method. AOGP exhibited superior performance in identifying intact O-glycopeptides of the human erythropoietin with a total of 188 O-glycopeptide spectra reported under 1% FDR. AOGP is developed in Python, is fully open-sourced, and is equipped with a user-friendly interface. Such an easy-operating and robust tool would greatly facilitate O-glycosylation analysis on single proteins in tumor biomarker and recombinant drug protein development.Electrospinning is a simple method for producing nanoscale or microscale fibers from a wide variety of materials. Intrinsically conductive polymers (ICPs), such as polyaniline (PANI), show higher conductivities with the use of secondary dopants like m-cresol. selleck products However, due to the low volatility of most secondary dopants, it has not been possible to electrospin secondary doped ICP fibers. In this work, the concept of secondary doping has been applied for the first time to electrospun fibers. Using a novel design for rotating drum electrospinning, fibers were efficiently and reliably produced from a mixture of low- and high-volatility solvents. The conductivity of electrospun PANI-poly(ethylene oxide) (PEO) fibers prepared was 1.73 S/cm, two orders of magnitude higher than the average value reported in the literature. These conductive fibers were tested as electrodes for supercapacitors and were shown to have a specific capacitance as high as 3121 F/g at 0.1 A/g, the highest value reported, thus far, for PANI-PEO electrospun fibers.Local surface plasmon resonance (LSPR)-enhanced catalysis has brought a substantial amount of opportunities across various disciplines such as photocatalysis, photodetection, and photothermal therapeutics. Plasmon-induced photothermal and hot carriers effects have also been utilized to activate the enzyme-like reactions. Compared with natural enzymes, the relatively low catalytic performance of nanozymes severely hampered the potential applications in the field of biomedicine. For these issues mentioned above, herein, we demonstrate a highly efficient sulfite oxidase (SuOx) mimetic performance of plasmonic monolayer MoOx (ML-MoOx) upon LSPR excitation. We also established that the considerable photothermal effect and the injection of hot carriers induced by LSPR are responsible for promoting the SuOx activity of ML-MoOx. The high transient local temperature on the surface of ML-MoOx generated by the photothermal effect facilitates to impact the reaction velocity and feed the SuOx-like activity, while the generation of hot carriers which are suggested as predominant effects catalyzes the oxidation of sulfite to sulfate through significantly decreasing the activation energy for the SuOx-like reaction.