Porterfieldzachariassen8794

Z Iurium Wiki

This study was carried out to evaluate the vaccination effect of a virus-like particle (VLP) including the surface antigen 1 (SAG1) of Toxoplasma gondii as a potential vaccine for toxoplasmosis. The SAG1 virus-like particles (SAG1-VLPs) were expressed by Sf9 cells, and their expression was confirmed through cloning, RT-PCR analysis, and western blot method. The immunogenicity and vaccine efficacy of SAG1-VLPs were assessed by the antibody response, cytokine analysis, neutralization activity, splenocyte assay, and survival rates through a mouse model. In particular, IgG, IgG1, IgG2a, and IgA were markedly increased after immunization, and the survival rates of T. gondii were strongly inhibited by the immunized sera. Furthermore, the immunization of SAG1-VLPs effectively decreased the production of specific cytokines, such as IL-1β, IL-6, TNF-α, and IFN-γ, after parasite infection. In particular, the immunized group showed strong activity and viability compared with the non-immunized infection group, and their survival rate was 75%. These results demonstrate that SAG1-VLP not only has the immunogenicity to block T. gondii infection by effectively inducing the generation of specific antibodies against T. gondii, but is also an effective antigen delivery system for preventing toxoplasmosis. This study indicates that SAG1-VLP can be effectively utilized as a promising vaccine candidate for preventing or inhibiting T. gondii infection.Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are minimally invasive and efficient techniques for the removal of gastrointestinal (GI) mucosal polyps. In both techniques, submucosal injection solutions are necessary for complete effectiveness and safety during the intervention to be obtained. The main objective of this study was to evaluate the efficacy and safety of a new sterile submucosal injection solution for EMR/ESD used within a clinical protocol in patients with intestinal polyps. We carried out a prospective study between 2016 and 2017 with patients who attended the Endoscopy Consultation-Digestive Department of Primary Hospital. Patients were selected for EMR/ESD after the application of clinical protocols. Thirty-six patients were selected (≥ 66 years with comorbidities and risk factors). Lesions were located mainly in the colon. Our solution presented an intestinal lift ≥ 60 min in EMR/ESD and a high expansion of tissue, optimum viscosity, and subsequent complete resorption. The genes S100A9 and TP53 presented an expression increase in the distal regions. TP53 and PCNA were the only genes whose expression was increased in polyp specimens vs. the surrounding tissue at the mRNA level. In EMR/ESD, our solution presented a prolonged effect at the intestinal level during all times of the intervention. Thus, our solution seems be an effective and safe alternative in cases of flat lesions in both techniques.The evaluation of encapsulation efficiency is a regulatory requirement for the characterization of drug delivery systems. However, the difficulties in efficiently separating nanomedicines from the free drug may compromise the achievement of accurate determinations. Herein, ultrafiltration was exploited as a separative strategy towards the evaluation of methotrexate (MTX) encapsulation efficiency in nanostructured lipid carriers and polymeric nanoparticles. The effect of experimental conditions such as pH and the amount of surfactant present in the ultrafiltration media was addressed aiming at the selection of suitable conditions for the effective purification of nanocarriers. MTX-loaded nanoparticles were then submitted to ultrafiltration and the portions remaining in the upper compartment of the filtering device and in the ultrafiltrate were collected and analyzed by HPLC-UV using a reversed-phase (C18) monolithic column. A short centrifugation time (5 min) was suitable for establishing the amount of encapsulated MTX in nanostructured lipid carriers, based on the assumption that the free MTX concentration was the same in the upper compartment and in the ultrafiltrate. The defined conditions allowed the efficient separation of nanocarriers from the free drug, with recoveries of >85% even when nanoparticles were present in cell culture media and in pig skin surrogate from permeation assays.In this study, the mechanical and rheological properties of hybrid polymer-modified bitumen (PMB) have been investigated. For this purpose, nine different polymers-including crumb rubber, elastomers and plastomers at varying content-were studied to evaluate their mechanical performance as single polymers, first, and as a combination of two or more polymers as a hybrid polymer blend. Subsequently, the hybrid polymer blends were added in a relatively small percentage into the base bitumen to study its influence on the rheological performance of hybrid PMB. The mechanical properties identified from the analysis of the stress-strain curve of the single polymers were the Young's Modulus, tensile stress, and elongation at break. The chemical structure of the polymer hybrid blends was analysed using FTIR, followed by frequency sweep tests conducted using the dynamic shear rheometer (DSR) to determine the bitumen rheological properties. Results showed that hybrid PMB enhances the viscoelastic behaviour of bitumen at both low and high temperature compared to other PMBs only including single polymers.(1) Background Viral respiratory infections cause life-threatening diseases in millions of people worldwide every year. Human coronavirus and several picornaviruses are responsible for worldwide epidemic outbreaks, thus representing a heavy burden to their hosts. In the absence of specific treatments for human viral infections, natural products offer an alternative in terms of innovative drug therapies. (2) Methods We analyzed the antiviral properties of the leaves and stem bark of the mulberry tree (Morus spp.). We compared the antiviral activity of Morus spp. on enveloped and nonenveloped viral pathogens, such as human coronavirus (HCoV 229E) and different members of the Picornaviridae family-human poliovirus 1, human parechovirus 1 and 3, and human echovirus 11. The antiviral activity of 12 water and water-alcohol plant extracts of the leaves and stem bark of three different species of mulberry-Morus alba var. alba, Morus alba var. rosa, and Morus rubra-were evaluated. We also evaluated the antiviral activities of kuwanon G against HCoV-229E. (3) Results Our results showed that several extracts reduced the viral titer and cytopathogenic effects (CPE). Leaves' water-alcohol extracts exhibited maximum antiviral activity on human coronavirus, while stem bark and leaves' water and water-alcohol extracts were the most effective on picornaviruses. (4) Conclusions The analysis of the antiviral activities of Morus spp. offer promising applications in antiviral strategies.In the present study, valorization of yarrow (Achillea millefolium) by-product from the filter tea industry was investigated through the application of subcritical water for the extraction of bioactive compounds. The influence of different process parameters (temperature 120-200 °C, extraction time 10-30 min, and HCl concentration in extraction solvent 0-1.5%) on extract quality in terms of content of bioactive compounds and antioxidant activity was investigated. Optimal conditions of the extraction process (temperature 198 °C, extraction time 16.5 min, and without acidifer) were determined and, when applied, the most efficient exploitation of by-products is achieved, that is, attainment of extracts rich in total phenols and flavonoids and high antioxidant activity. In addition, by applying the high performance liquid chromatographic analysis, the content of chlorogenic acid was determined as well as the hydroxymethylfurfural content in obtained extracts. The results demonstrated that subcritical water can be successfully used for utilization of yarrow by-products for obtaining extracts rich in antioxidants.Tuberculosis (TB) is one of the deadliest infectious diseases worldwide and is caused by Mycobacterium tuberculosis (Mtb). An effective vaccine to prevent TB is considered the most cost-effective measure for controlling this disease. Many different vaccine antigen (Ag) candidates, including well-known and newly identified Ags, have been evaluated in clinical and preclinical studies. In this study, we took advantage of a plant system of protein expression using Nicotiana benthamiana to produce N-glycosylated antigen 85A (G-Ag85A), which is one of the most well-characterized vaccine Ag candidates in the field of TB vaccines, and compared its immunogenicity and vaccine efficacy with those of nonglycosylated Ag85A (NG-Ag85A) produced with an Escherichia coli system. Notably, G-Ag85A induced a more robust IFN-γ response than NG-Ag85A, which indicated that G-Ag85A is well recognized by the host immune system during Mtb infection. We subsequently compared the vaccine potential of G-Ag85A and NG-Ag85A by evaluating their immunological features and substantial protection efficacies. Interestingly, G-Ag85A yielded moderately enhanced long-term protective efficacy, as measured in terms of bacterial burden and lung inflammation. Strikingly, G-Ag85A-immunized mice showed a more balanced proportion of multifunctional Th1-biased immune responses with sustained IFN-γ response than did NG-Ag85A-immunized mice. learn more Collectively, plant-derived G-Ag85A could induce protective and balanced Th1 responses and confer long-term protection against a hypervirulent Mtb Beijing strain infection, which indicated that plant-produced G-Ag85A might provide an excellent example for the production of an Mtb subunit vaccine Ag and could be an effective platform for the development of anti-TB vaccines.Although several studies have used wearable sensors to analyze human lifting, this has generally only been done in a limited manner. In this proof-of-concept study, we investigate multiple aspects of offline lift characterization using wearable inertial measurement sensors detecting the start and end of the lift and classifying the vertical movement of the object, the posture used, the weight of the object, and the asymmetry involved. In addition, the lift duration, horizontal distance from the lifter to the object, the vertical displacement of the object, and the asymmetric angle are computed as lift parameters. Twenty-four healthy participants performed two repetitions of 30 different main lifts each while wearing a commercial inertial measurement system. The data from these trials were used to develop, train, and evaluate the lift characterization algorithms presented. The lift detection algorithm had a start time error of 0.10 s ± 0.21 s and an end time error of 0.36 s ± 0.27 s across all 1489 lift trials with no missed lifts. For posture, asymmetry, vertical movement, and weight, our classifiers achieved accuracies of 96.8%, 98.3%, 97.3%, and 64.2%, respectively, for automatically detected lifts. The vertical height and displacement estimates were, on average, within 25 cm of the reference values. The horizontal distances measured for some lifts were quite different than expected (up to 14.5 cm), but were very consistent. Estimated asymmetry angles were similarly precise. In the future, these proof-of-concept offline algorithms can be expanded and improved to work in real-time. This would enable their use in applications such as real-time health monitoring and feedback for assistive devices.

Autoři článku: Porterfieldzachariassen8794 (Finley Lu)