Poolehartvigsen4665

Z Iurium Wiki

The myostatin (MSTN) gene has shown to play a critical role in the regulation of skeletal muscle mass, and the translational inhibition of this gene has shown increased muscle mass, generating what is known as "double-muscling phenotype." Disruption of the MSTN gene expression using the CRISPR/Cas9 genome-editing system has shown improved muscle development and growth rates in livestock species, including sheep and goats. Here, we describe procedures for the generation of MSTN knockout sheep and goats using the microinjection approach of the CRISPR/Cas9 system, including the selection of targeting sgRNAs, the construction of CRISPR/Cas9 targeting vector, the in vitro examination of system efficiency, the in vivo targeting to generate MSTN knockout founders, the genomic and phenotypic characterization of the generated offspring, and the assessment of off-target effects in gene-edited founders through targeted validation of predicted off-target sites, as well as genome-wide off-target analysis by whole-genome sequencing. Editing the MSTN gene using the CRISPR/Cas9 system might be a rapid and promising alternative to promote meat production in livestock.In livestock industry, one sex is usually preferred over the other due to its impact on the production (e.g., milk from cows, eggs from laying hens, or meat from bulls). Boar taint, to which most of the consumers are susceptible, is a major challenge for the pork industry in the light of the enacted ban of castration without anesthesia from 2021 in Germany. Consequently, a shift towards an increased female ratio would be of great benefit for the pork production. We recently described that a CRISPR/Cas9-mediated knockout of the porcine SRY gene by intracytoplasmic microinjection or SCNT resulted in genetically male pigs with a female phenotype. This sex reversal study in pigs revealed a pivotal role of the SRY gene in male sex determination and might pave the way for the generation of boars that produce only female offspring.Creating mouse models of human genetic disease (Gurumurthy and Lloyd, Dis Models Mech 12(1)dmm029462, 2019) and livestock trait (Schering et al. Arch Physiol Biochem 121(5)194-205, 2015; Habiela et al. J Gen Virol 95 (Pt 11)2329-2345, 2014) have been proven to be a useful tool for understanding the mechanism behind the phenotypes and fundamental and applied research in livestock. A single base pair deletion of prolactin receptor (PRLR) has an impact on hair morphology phenotypes beyond its classical roles in lactation in cattle, the so-called slick cattle (Littlejohn et al. Nat Commun 55861, 2014). Here, we generate a knock-in mouse model by targeting the specific locus of PRLR gene using Cas9-mediated genome editing via homology-directed repair (HDR) in mouse zygotes. The mouse model carrying the identical PRLR mutation in slick cattle may provide a useful animal model to study the pathway of thermoregulation and the mechanism of heat-tolerance in the livestock.As the genetic mutations driving human disease are identified, there is an increasing need for a biomedical model that can accurately represent the disease of interest and provide a platform for potential therapeutic testing. Pigs are a better model for human disease than rodents because of their genetic and physiological similarities to humans. However, current methods to generate porcine models are both technically challenging and expensive. Germline genetic modification through gene edited spermatogonia provides an effective alternative to how these models are developed. Here, we report an improved technique of gene editing in spermatogonia of pigs using CRISPR-Cas9 to generate different edits that reflect the genotypes of human diseases.CRISPR/Cas9 system is a promising method for the generation of human disease models by genome editing in non-conventional experimental animals. Medium/large-sized animals like sheep have several advantages to study human diseases and medicine. Here, we present a protocol that describes the generation of an otoferlin edited sheep model via CRISPR-assisted single-stranded oligodinucleotide-mediated Homology-Directed Repair (HDR), through direct cytoplasmic microinjection in in vitro produced zygotes.Otoferlin is a protein expressed in the cochlear inner hair cells, with different mutations at the OTOF gene being the major cause of nonsyndromic recessive auditory neuropathy spectrum disorder in humans. By using this protocol, we reported for the first time an OTOF KI model in sheep with 17.8% edited lambs showing indel mutations, and 61.5% of them bearing knock-in mutations by HDR . The reported method establishes the bases to produce a deafness model to test novel therapies in human disorders related to OTOF mutations.Gene drives are genetic elements that are transmitted to greater than 50% of offspring and have potential for population modification or suppression. While gene drives are known to occur naturally, the recent emergence of CRISPR-Cas9 genome-editing technology has enabled generation of synthetic gene drives in a range of organisms including mosquitos, flies, and yeast. For example, studies in Anopheles mosquitos have demonstrated >95% transmission of CRISPR-engineered gene drive constructs, providing a possible strategy for malaria control. Recently published studies have also indicated that it may be possible to develop gene drive technology in invasive rodents such as mice. Here, we discuss the prospects for gene drive development in mice, including synthetic "homing drive" and X-shredder strategies as well as modifications of the naturally occurring t haplotype. We also provide detailed protocols for generation of gene drive mice through incorporation of plasmid-based transgenes in a targeted and non-targeted manner. Importantly, these protocols can be used for generating transgenic mice for any project that requires insertion of kilobase-scale transgenes such as knock-in of fluorescent reporters, gene swaps, overexpression/ectopic expression studies, and conditional "floxed" alleles.Blowflies are of interest for medical applications (maggot therapy), forensic investigations, and for evolutionary developmental studies such as the evolution of parasitism. It is because of the latter that some blowflies such as the New World screwworm and the Australian sheep blowfly are considered major economic pests of livestock. Due to their importance, annotated assembled genomes for several species are now available. Here, we present a detailed guide for using the Streptococcus pyogenes Cas9 RNA-guided nuclease to efficiently generate both knockout and knock-in mutations in screwworm and sheep blowfly. These methods should accelerate genetic investigations in these and other closely related species and lead to a better understanding of the roles of selected genes in blowfly development and behavior.Sterile Insect Technique (SIT) is a biocontrol strategy that has been widely utilized to suppress or eradicate outbreak populations of insect pests such as tephritid fruit flies. this website As SIT is highly favored due to it being species-specific and environmentally friendly, there are constant efforts to improve the efficiency and efficacy of this method in particular at low pest densities; one of which is the use of genetically enhanced strains. Development of these desirable strains has been facilitated by the emergence of the CRISPR/Cas genome-editing technology that enables the rapid and precise genomic modification of non-model organisms. Here, we describe the manual microinjection of CRISPR/Cas9 reagents into tephritid pest Bactrocera tryoni (Queensland fruit fly) embryos to introduce ideal traits as well as the molecular methods used to detect successful mutagenesis.The CRISPR-on system is a programmable, simple, and versatile gene activator that has proven to be efficient in cultured cells from several species and in bovine embryos. This technology allows for the precise and specific activation of single endogenous gene expression and also multiplexed gene expression in a simple fashion. Therefore, CRISPR-on has unique advantages over other activator systems and a wide adaptability for studies in basic and applied science, such as cell reprogramming and cell fate differentiation for regenerative medicine.In this chapter, we describe the materials and methods of the CRISPR-on system for activation of the endogenous SMARCA4 expression in bovine embryos.Genetically modified (GM) mice are widely used in biomedical research because they can address complex questions in an in-vivo setting that could not otherwise be addressed in-vitro. Microinjection of zygotes remains the most common technique to generate GM animals to date. Here, we describe the targeted insertion (knock-in) of transgenes by microinjection of 1-cell or 2-cell stage embryos into the murine Rosa26 safe harbor.CRISPR/Cas9 system is a powerful genome-editing technology for studying genetics and cell biology. Safe harbor sites are ideal genomic locations for transgene integration with minimal interference in cellular functions. Gene targeting of the AAVS1 locus enables stable transgene expression without phenotypic effects in host cells. Here, we describe the strategy for targeting the AAVS1 site with an inducible Neurogenin-2 (Ngn2) donor template by CRISPR/Cas9 in hiPSCs, which facilitates generation of an inducible cell line that can rapidly and homogenously differentiate into excitatory neurons.The ability of modifying the genome of multiple species, precisely and without or minimal off-targeted effects, have opened numerous opportunities for the biotechnology industry. In this chapter, we describe an easy to establish, robust, and practical pipeline that can be used to generate immortalized cell lines, from different tissues, to capture cell linage context and validate the tools required for genome editing and genetic modification. This pipeline serves as a reference for similar approaches for gene interrogation in other species.Bacterial artificial chromosomes have been used extensively for the exploration of mammalian genomes. Although novel approaches made their initial function expendable, the available BAC libraries are a precious source for life science. Their comprising of extended genomic regions provides an ideal basis for creating a large targeting vector. Here, we describe the identification of suitable BACs from their libraries and their verification prior to manipulation. Further, protocols for modifying BAC, confirming the desired modification and the preparation of transfection into mammalian cells are given.The piggyBac transposon system has been adapted to be a highly efficient genome engineering tool for transgenesis of eukaryotic cells and organisms. As with other methods of transgenesis, incorporation of an inducible promoter, such as a tetracycline-responsive element, enables inducible transgene expression. Here, we describe an efficient method of using the piggyBac system to create stably transfected mammalian cell lines, including inducible transgene expression. Gibson assembly is used to construct the required vectors as it enables multiple DNA fragments to be seamlessly assembled in a single isothermal reaction. We demonstrate an application of this approach to generate a stably transfected pluripotent stem cell line that can be induced to express a transcription factor transgene and rapidly differentiate into neurons in a single step.

Autoři článku: Poolehartvigsen4665 (Holmgaard Malling)