Plougjohansson9612
These results were confirmed, in silico, by docking studies, revealing that R-(-)-pentedrone is the enantiomer with highest affinity to MRP1 and S-(-)-methylone and R-(-)-pentedrone are the enantiomers with highest affinity to P-gp. In conclusion, our data demonstrated that pentedrone and methylone present enantioselectivity in their cytotoxicity, which seems to involve different oxidative reactivity as well as different affinity to the P-gp and MRP1 that together with GSH play a protective role.We assess the effect of autophagy inhibition on photoreceptor (PR) survival during experimental retinal detachment (RD) and examine the and examine the relationship between autophagy and the expression of glycolytic enzymes HK2 and PKM2 in the retina. We find that inhibiting autophagy by genetic knock out of the autophagy activator Atg5 in rod PRs resulted in increased apoptotic and necroptotic cell death during RD, demonstrated by elevated terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, caspase 8 activity, transcript levels of Fas receptor and RIPK3 as compared to controls. The absence of autophagy in rods resulted in downregulation of hexokinase 2 and pyruvate kinase muscle isozyme 2 levels. More than 460 proteins were identified by mass spectroscopy in autophagosomes isolated from detached retinas compared with less than 150 proteins identified in autophagosomes from attached retinas. Among various cellular compartments, proteins from cytoskeleton, cytoplasm and intracellular organelles constituted a large portion of increased autophagosome contents. These proteins represent numerous biological processes, including phototransduction, cell-cell signaling, metabolism and inflammation. Our findings suggest that competent autophagy machinery is necessary for PR homeostasis and improving PR survival during periods of nutrient deprivation.Glaucoma is a neuropathic disease that causes optic nerve damage, loss of retinal ganglion cells (RGCs), and visual field defects. Most glaucoma patients have no early signs or symptoms. Conventional pharmacological glaucoma medications and surgeries that focus on lowering intraocular pressure are not sufficient; RGCs continue to die, and the patient's vision continues to decline. Recent evidence has demonstrated that neuroprotective approaches could be a promising strategy for protecting against glaucoma. In the case of glaucoma, neuroprotection aims to prevent or slow down disease progression by mitigating RGCs death and optic nerve degeneration. Notably, new pharmacologic medications such as antiglaucomatous agents, antibiotics, dietary supplementation, novel neuroprotective molecules, neurotrophic factors, translational methods such as gene therapy and cell therapy, and electrical stimulation-based physiotherapy are emerging to attenuate the death of RGCs, or to make RGCs resilient to attacks. Understanding the roles of these interventions in RGC protection may offer benefits over traditional pharmacological medications and surgeries. In this review, we summarize the recent neuroprotective strategy for glaucoma, both in clinical trials and in laboratory research.The characterization of corneal biomechanical properties has important implications for the management of ocular disease and prediction of surgical responses. Corneal refractive surgery outcomes, progression or stabilization of ectatic disease, and intraocular pressure determination are just examples of the many key clinical problems that depend highly upon corneal biomechanical characteristics. However, to date there is no gold standard measurement technique. Since the advent of a 1-dimensional (1D) air-puff based technique for measuring the corneal surface response in 2005, advances in clinical imaging technology have yielded increasingly sophisticated approaches to characterizing the biomechanical properties of the cornea. Novel analyses of 1D responses are expanding the clinical utility of commercially-available air-puff-based instruments, and other imaging modalities-including optical coherence elastography (OCE), Brillouin microscopy and phase-decorrelation ocular coherence tomography (PhD-OCT)-offer new opportunities for probing local biomechanical behavior in 3-dimensional space and drawing new inferences about the relationships between corneal structure, mechanical behavior, and corneal refractive function. These advances are likely to drive greater clinical adoption of in vivo biomechanical analysis and to support more personalized medical and surgical decision-making.Proliferative retinopathies, such as proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP) are major causes of visual impairment and blindness in industrialized countries. Prostaglandin E2 (PGE2) is implicated in cellular proliferation and migration via E-prostanoid receptor (EP4R). The aim of this study was to investigate the role of PGE2/EP4R signaling in the promotion of retinal neovascularisation. In a streptozotocin (STZ)-induced diabetic model and an oxygen-induced retinopathy (OIR) model, rats received an intravitreal injection of PGE2, cay10598 (an EP4R agonist) or AH23848 (an EP4R antagonist). Optical coherence tomography, retinal histology and biochemical markers were assessed. selleckchem Treatment with PGE2 or cay10598 accelerated pathological retinal angiogenesis in STZ and OIR-induced rat retina, which was ameliorated in rats pretreated with AH23848. Serum VEGF-A was upregulated in the PGE2-treated diabetic rats vs non-treated diabetic rats and significantly downregulated in AH23848-treated diabetic rats. PGE2 or cay10598 treatment also significantly accelerated endothelial tip-cell formation in new-born rat retina. In addition, AH23848 treatment attenuated PGE2-or cay10598-induced proliferation and migration by repressing the EGF receptor (EGFR)/Growth factor receptor bound protein 2-associated binder protein 1 (Gab1)/Akt/NF-κB/VEGF-A signaling network in human retinal microvascular endothelial cells (hRMECs). PGE2/EP4R signaling network is thus a potential therapeutic target for pathological intraocular angiogenesis.