Pittmandennis1433
Due to the gradual depletion of fossil fuels and the serious environmental pollution, hydrogen generation by photocatalytic water splitting has been considered as an alternative strategy for clean energy. Herein, using hybrid density functional calculations, we systematically study the structural, electronic and optical properties of van der Waals heterostructure CdO/PtSe2 with different stacking patterns. The heterostructure is found to be dynamically stable, and has type-II band alignment with a large built-in electric field, which is favorable for the efficient spatial separation of photogenerated charge carriers. By revealing the intrinsic interface dipoles dependent photocatalytic mechanisms, we find the band edges of all patterns straddle the water redox levels despite the AB-1 pattern having a bandgap less than 1.23 eV. Moreover, the heterostructure shows globally improved optical absorptions with a large absorption coefficient (105 cm-1) compared to the single layers, demonstrating the enhanced photocatalytic activity. Comparing with widely discussed bilayer systems like graphene/C3N4 and MoS2/C3N4, the CdO/PtSe2 simultaneously has several advantages or peculiarities such as the more favorable absorption of visible light, therefore CdO/PtSe2 is a promising candidate and a unique system for photocatalytic water splitting.A variety of polymeric scaffolds with the ability to control cell detachment has been created for cell culture using stimuli-responsive polymers. However, the widely studied and commonly used thermo-responsive polymeric substrates always affect the properties of the cultured cells due to the temperature stimulus. Here, we present a different stimuli-responsive approach based on poly(3-acrylamidopropyl)trimethylammonium chloride) (poly(APTAC)) brushes with homogeneously embedded superparamagnetic iron oxide nanoparticles (SPIONs). Neuroblastoma cell detachment was triggered by an external magnetic field, enabling a non-invasive process of controlled transfer into a new place without additional mechanical scratching and chemical/biochemical compound treatment. Hybrid scaffolds obtained in simultaneous surface-initiated atom transfer radical polymerization (SI-ATRP) were characterized by atomic force microscopy (AFM) working in the magnetic mode, secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS) to confirm the magnetic properties and chemical structure. Moreover, neuroblastoma cells were cultured and characterized before and after exposure to a neodymium magnet. Controlled cell transfer triggered by a magnetic field is presented here as well.High-pressure multiplexed photoionization mass spectrometry (MPIMS) with tunable vacuum ultraviolet (VUV) ionization radiation from the Lawrence Berkeley Labs Advanced Light Source is used to investigate the oxidation of diethyl ether (DEE). Kinetics and photoionization (PI) spectra are simultaneously measured for the species formed. Several stable products from DEE oxidation are identified and quantified using reference PI cross-sections. In addition, we directly detect and quantify three key chemical intermediates peroxy (ROO˙), hydroperoxyalkyl peroxy (˙OOQOOH), and ketohydroperoxide (HOOP[double bond, length as m-dash]O, KHP). These intermediates undergo dissociative ionization (DI) into smaller fragments, making their identification by mass spectrometry challenging. selleck kinase inhibitor With the aid of quantum chemical calculations, we identify the DI channels of these key chemical species and quantify their time-resolved concentrations from the overall carbon atom balance at T = 450 K and P = 7500 torr. This allows the determination of the absolute PI cross-sections of ROO˙, ˙OOQOOH, and KHP into each DI channel directly from experiment. The PI cross-sections in turn enable the quantification of ROO˙, ˙OOQOOH, and KHP from DEE oxidation over a range of experimental conditions that reveal the effects of pressure, O2 concentration, and temperature on the competition among radical decomposition and second O2 addition pathways.Industrially, large-scale NH3 production is achieved by the Haber-Bosch process, which operates under harsh reaction conditions with abundant energy consumption and CO2 emission. Electrochemical N2 reduction is an eco-friendly and energy-saving method for artificial N2 to NH3 fixation under ambient reaction conditions. Herein, we demonstrate that ZrS2 nanofibers with a sulfur vacancy (ZrS2 NF-Vs) behave as an efficient electrocatalyst for ambient N2 reduction to NH3 with excellent selectivity. In 0.1 M HCl, this ZrS2 NF-Vs catalyst attains a large NH3 yield of 30.72 μg h-1 mgcat.-1 and a high faradaic efficiency of 10.33% at -0.35 V and -0.30 V vs. reversible hydrogen electrode, respectively. It also shows high electrochemical and structural stability. The density functional theory calculations reveal that the introduction of Vs facilitates the adsorption and activation of N2 molecules.Intelligent phototherapy by theranostic nanosystems that can be activated by a tumor microenvironment has high sensitivity and specificity. However, hypoxia and low drug accumulation in tumors greatly limit its clinical application. Herein, we have designed a cage-like carbon-manganese nanozyme, which effectively relieves tumor hypoxia and delivers numerous photosensitizers (PSs) to the tumor site, for real-time imaging and enhanced phototherapy of esophageal cancer. Specifically, bovine serum albumin (BSA) was used as a template and reducing agent for preparing a BSA-MnO2 nanozyme; then a BSA-MnO2/IR820@OCNC (BMIOC) nanosystem was successfully synthesized by crosslinking BSA-MnO2 on the surface of IR820-loaded carboxylated carbon nanocages (OCNCs). Abundant PSs were successfully delivered to tumor sites via hollow OCNCs, and the final loading rate of IR820 reached 42.8%. The intratumor BMIOC nanosystem can be initiated by a tumor microenvironment to switch on its magnetic resonance (MR) imaging signal, and photothermal therapy (PTT) and photodynamic therapy (PDT) functions. Notably, the BSA-MnO2 nanozyme, with intrinsic catalase (CAT)-like activity, catalyzed endogenous H2O2 for oxygen generation to overcome tumor hypoxia and enhance PDT, thereby leading to more efficient therapeutic effects in combination with OCNC-elevated PTT. In addition, the H2O2-activated and acid-enhanced properties enable our nanosystem to be specific to tumors, protecting normal tissues from damage. By integrating a high drug loading capacity, a hypoxia regulation function, an enlarged phototherapy effect, and bimodal imaging into a nanozyme-mediated nanoreactor, this work realizes a "one for all" system and represents promising clinical translation for efficient esophageal cancer theranostics.