Pilegaardbang2063

Z Iurium Wiki

Activation of transcription factors is a key driver event in cancer. We and others have recently reported that the Krüppel-like transcription factor KLF5 is activated in multiple epithelial cancer types including squamous cancer and gastrointestinal adenocarcinoma, yet the functional consequences and the underlying mechanisms of this activation remain largely unknown. Here we demonstrate that activation of KLF5 results in strongly selective KLF5 dependency for these cancer types. KLF5 bound lineage-specific regulatory elements and activated gene expression programs essential to cancer cells. this website revealed that multiple distal KLF5 binding events cluster and synergize to activate individual target genes. Immunoprecipitation-mass spectrometry assays showed that KLF5 interacts with other transcription factors such as TP63 and YAP1, as well as the CBP/EP300 acetyltransferase complex. Furthermore, KLF5 guided the CBP/EP300 complex to increase acetylation of H3K27, which in turn enhanced recruitment of the bromodomain protein BRD4 to chromatin. The 3D chromatin architecture aggregated KLF5-dependent BRD4 binding to activate polymerase II elongation at KLF5 target genes, which conferred a transcriptional vulnerability to proteolysis-targeting chimera-induced degradation of BRD4. Our study demonstrates that KLF5 plays an essential role in multiple epithelial cancers by activating cancer-related genes through 3D chromatin loops, providing an evidence-based rationale for targeting the KLF5 pathway. SIGNIFICANCE An integrative 3D genomics methodology delineates mechanisms underlying the function of KLF5 in multiple epithelial cancers and suggests potential strategies to target cancers with aberrantly activated KLF5.Metabolic dysregulation is a known hallmark of cancer progression, yet the oncogenic signals that promote metabolic adaptations to drive metastatic cancer remain unclear. Here, we show that transcriptional repression of mitochondrial deacetylase sirtuin 3 (SIRT3) by androgen receptor (AR) and its coregulator steroid receptor coactivator-2 (SRC-2) enhances mitochondrial aconitase (ACO2) activity to favor aggressive prostate cancer. ACO2 promoted mitochondrial citrate synthesis to facilitate de novo lipogenesis, and genetic ablation of ACO2 reduced total lipid content and severely repressed in vivo prostate cancer progression. A single acetylation mark lysine258 on ACO2 functioned as a regulatory motif, and the acetylation-deficient Lys258Arg mutant was enzymatically inactive and failed to rescue growth of ACO2-deficient cells. Acetylation of ACO2 was reversibly regulated by SIRT3, which was predominantly repressed in many tumors including prostate cancer. Mechanistically, SRC-2-bound AR formed a repressive complex by recruiting histone deacetylase 2 to the SIRT3 promoter, and depletion of SRC-2 enhanced SIRT3 expression and simultaneously reduced acetylated ACO2. In human prostate tumors, ACO2 activity was significantly elevated, and increased expression of SRC-2 with concomitant reduction of SIRT3 was found to be a genetic hallmark enriched in prostate cancer metastatic lesions. In a mouse model of spontaneous bone metastasis, suppression of SRC-2 reactivated SIRT3 expression and was sufficient to abolish prostate cancer colonization in the bone microenvironment, implying this nuclear-mitochondrial regulatory axis is a determining factor for metastatic competence. SIGNIFICANCE This study highlights the importance of mitochondrial aconitase activity in the development of advanced metastatic prostate cancer and suggests that blocking SRC-2 to enhance SIRT3 expression may be therapeutically valuable. GRAPHICAL ABSTRACT http//cancerres.aacrjournals.org/content/canres/81/1/50/F1.large.jpg.Investigating metabolic rewiring in cancer can lead to the discovery of new treatment strategies for breast cancer subtypes that currently lack targeted therapies. In this study, we used MMTV-Myc-driven tumors to model breast cancer heterogeneity, investigating the metabolic differences between two histologic subtypes, the epithelial-mesenchymal transition (EMT) and the papillary subtypes. A combination of genomic and metabolomic techniques identified differences in nucleotide metabolism between EMT and papillary subtypes. EMT tumors preferentially used the nucleotide salvage pathway, whereas papillary tumors preferred de novo nucleotide biosynthesis. CRISPR/Cas9 gene editing and mass spectrometry-based methods revealed that targeting the preferred pathway in each subtype resulted in greater metabolic impact than targeting the nonpreferred pathway. Knocking out the preferred nucleotide pathway in each subtype has a deleterious effect on in vivo tumor growth, whereas knocking out the nonpreferred pathway has a lesser effect or may even result in increased tumor growth. Collectively, these data suggest that significant differences in metabolic pathway utilization distinguish EMT and papillary subtypes of breast cancer and identify said pathways as a means to enhance subtype-specific diagnoses and treatment strategies. SIGNIFICANCE These findings uncover differences in nucleotide salvage and de novo biosynthesis using a histologically heterogeneous breast cancer model, highlighting metabolic vulnerabilities in these pathways as promising targets for breast cancer subtypes.Chromophobe renal cell carcinoma (chRCC) accounts for approximately 5% of all renal cancers and around 30% of chRCC cases have mutations in TP53. chRCC is poorly supported by microvessels and has markably lower glucose uptake than clear cell RCC and papillary RCC. Currently, the metabolic status and mechanisms by which this tumor adapts to nutrient-poor microenvironments remain to be investigated. In this study, we performed proteome and metabolome profiling of chRCC tumors and adjacent kidney tissues and identified major metabolic alterations in chRCC tumors, including the classical Warburg effect, the downregulation of gluconeogenesis and amino acid metabolism, and the upregulation of protein degradation and endocytosis. chRCC cells depended on extracellular macromolecules as an amino acid source by activating endocytosis to sustain cell proliferation and survival. #link# Inhibition of the phospholipase C gamma 2 (PLCG2)/inositol 1,4,5-trisphosphate (IP3)/Ca2+/protein kinase C (PKC) pathway significantly impaired the activation of endocytosis for amino acid uptakes into chRCC cells.

Autoři článku: Pilegaardbang2063 (Porter Ohlsen)