Pettyboje5418

Z Iurium Wiki

Microwave sensors have recently been introduced as high-temporal resolution sensors, which could be used in the contactless monitoring of artery pulsation and breathing. However, accurate and efficient signal processing methods are still required. In this paper, the matrix pencil method (MPM), as an efficient method with good frequency resolution, is applied to back-reflected microwave signals to extract vital signs. It is shown that decomposing of the signal to its damping exponentials fulfilled by MPM gives the opportunity to separate signals, e.g., breathing and heartbeat, with high precision. A publicly online dataset (GUARDIAN), obtained by a continuous wave microwave sensor, is applied to evaluate the performance of MPM. Two methods of bandpass filtering (BPF) and variational mode decomposition (VMD) are also implemented. In addition to the GUARDIAN dataset, these methods are also applied to signals acquired by an ultra-wideband (UWB) sensor. It is concluded that when the vital sign is sufficiently strong and pure, all methods, e.g., MPM, VMD, and BPF, are appropriate for vital sign monitoring. However, in noisy cases, MPM has better performance. Therefore, for non-contact microwave vital sign monitoring, which is usually subject to noisy situations, MPM is a powerful method.This paper is aimed at the characterization and manufacturing of an SMA coaxial fed compact blade antenna with dual frequency characteristics for broadband applications on board of Unmanned Air Vehicles (UAVs). This antenna is linearly polarized, and it combines the benefits of Automatic Dependent Surveillance-Broadcast (ADS-B) and 5th Generation (5G) communications in one single element, covering both the 1.030-1.090 GHz and the 3.4-3.8 GHz bands thanks to a bent side and a 'C' shaped slot within the radiation element. Starting from the simulation outcomes on an ideal ground plane, the results are here extended to a bent ground plane and on two UAV commercial CAD models. Details of manufacturing of the antenna in both aluminium and FR-4 substrate materials are presented. The comparison between measurements and simulations is discussed in terms of return loss, bandwidth, gain, and radiation pattern. Results show an antenna with a low profile and a simple structure that can be employed in various wideband communication systems, suiting future UAV assisted 5G networks while being perfectly compliant with forthcoming ADS-B based Detect-And-Avoid (DAA) technologies in Unmanned Aerial Traffic Management (UTM).Remote sensing techniques currently used to detect oil spills have not yet demonstrated their applicability to dispersed forms of oil. However, oil droplets dispersed in seawater are known to modify the local optical properties and, consequently, the upwelling light flux. Theoretically possible, passive remote detection of oil droplets was never tested in the offshore conditions. This study presents a field experiment which demonstrates the capability of commercially available sensors to detect significant changes in the remote sensing reflectance Rrs of seawater polluted by six types of dispersed oils (two crude oils, cylinder lubricant, biodiesel, and two marine gear lubricants). The experiment was based on the comparison of the upwelling radiance Lu measured in a transparent tank floating in full immersion in seawater in the Southern Baltic Sea. The tank was first filled with natural seawater and then polluted by dispersed oils in five consecutive concentrations of 1-15 ppm. After addition of dispersed oils, spectra of Rrs noticeably increased and the maximal increase varied from 40% to over three-fold at the highest oil droplet concentration. Moreover, the most affected Rrs band ratios and band differences were analyzed and are discussed in the context of future construction of algorithms for dispersed oil detection.Ultra-wideband (UWB) sensors have been widely applied to indoor positioning. The indoor positioning of UWB sensors usually refers to the positioning of the mobile node that interacts with the anchors through radio for calculating the distance between the mobile node and each of the surrounding anchors. The positioning accuracy of the mobile node is affected by the installation positions of surrounding anchors. A mathematical model was proposed in this paper to respectively analyze the mobile node's 2-dimensional (2D) and 3-dimensional (3D) positioning errors. The factors influencing the mobile node's positioning errors were explored through the mathematical models. The best installation positions of surrounding anchors were obtained based on the mathematical models. The mobile node's 2D and 3D positioning errors were reduced based on the anchor positions derived from the mathematical model. Both computer simulations and practical experiments were implemented to justify the results obtained in the mathematical models.The in-situ characterisation of strontium-90 contamination of groundwater at nuclear decommissioning sites would represent a novel and cost-saving technology for the nuclear industry. However, beta particles are emitted over a continuous spectrum and it is difficult identify radionuclides due to the overlap of their spectra and the lack of characteristic features. This can be resolved by using predictive modelling to perform a maximum-likelihood estimation of the radionuclides present in a beta spectrum obtained with a semiconductor detector. This is achieved using a linear least squares linear regression and relating experimental data with simulated detector response data. In this case, by simulating a groundwater borehole scenario and the deployment of a cadmium telluride detector within it, it is demonstrated that it is possible to identify the presence of 90Sr, 90Y, 137Cs and 235U decay. It is determined that the optimal thickness of the CdTe detector for this technique is in the range of 0.1 to 1 mm. The influence of suspended solids in the groundwater is also investigated. The average and maximum concentrations of suspended particles found at Sellafield do not significantly deteriorate the results. It is found that applying the linear regression over two energy windows improves the estimate of 90Sr activity in a mixed groundwater source. These results provide validation for the ability of in-situ detectors to determine the activity of 90Sr in groundwater in a timely and cost-effective manner.This study provides two mathematical tools to best estimate the gravity direction when using a pair of non-orthogonal inclinometers whose measurements are affected by zero-mean Gaussian errors. These tools consist of (1) the analytical derivation of the gravity direction expectation and its covariance matrix, and (2) a continuous description of the geoid model correction as a linear combination of a set of orthogonal surfaces. The accuracy of the statistical quantities is validated by extensive Monte Carlo tests and the application in an Extended Kalman Filter (EKF) has been included. The continuous geoid description is needed as the geoid represents the true gravity direction. These tools can be implemented in any problem requiring high-precision estimates of the local gravity direction.The centralized fusion estimation problem for discrete-time vectorial tessarine signals in multiple sensor stochastic systems with random one-step delays and correlated noises is analyzed under different T-properness conditions. Based on Tk, k=1,2, linear processing, new centralized fusion filtering, prediction, and fixed-point smoothing algorithms are devised. These algorithms have the advantage of providing optimal estimators with a significant reduction in computational cost compared to that obtained through a real or a widely linear processing approach. Simulation examples illustrate the effectiveness and applicability of the algorithms proposed, in which the superiority of the Tk linear estimators over their counterparts in the quaternion domain is apparent.Gas explosion has always been an important factor restricting coal mine production safety. The application of machine learning techniques in coal mine gas concentration prediction and early warning can effectively prevent gas explosion accidents. Nearly all traditional prediction models use a regression technique to predict gas concentration. Considering there exist very few instances of high gas concentration, the instance distribution of gas concentration would be extremely imbalanced. Therefore, such regression models generally perform poorly in predicting high gas concentration instances. In this study, we consider early warning of gas concentration as a binary-class problem, and divide gas concentration data into warning class and non-warning class according to the concentration threshold. We proposed the probability density machine (PDM) algorithm with excellent adaptability to imbalanced data distribution. In this study, we use the original gas concentration data collected from several monitoring points in a coal mine in Datong city, Shanxi Province, China, to train the PDM model and to compare the model with several class imbalance learning algorithms. The results show that the PDM algorithm is superior to the traditional and state-of-the-art class imbalance learning algorithms, and can produce more accurate early warning results for gas explosion.The detection of concrete spalling is critical for tunnel inspectors to assess structural risks and guarantee the daily operation of the railway tunnel. However, traditional spalling detection methods mostly rely on visual inspection or camera images taken manually, which are inefficient and unreliable. In this study, an integrated approach based on laser intensity and depth features is proposed for the automated detection and quantification of concrete spalling. The Railway Tunnel Spalling Defects (RTSD) database, containing intensity images and depth images of the tunnel linings, is established via mobile laser scanning (MLS), and the Spalling Intensity Depurator Network (SIDNet) model is proposed for automatic extraction of the concrete spalling features. The proposed model is trained, validated and tested on the established RSTD dataset with impressive results. Comparison with several other spalling detection models shows that the proposed model performs better in terms of various indicators such as MPA (0.985) and MIoU (0.925). The extra depth information obtained from MLS allows for the accurate evaluation of the volume of detected spalling defects, which is beyond the reach of traditional methods. In addition, a triangulation mesh method is implemented to reconstruct the 3D tunnel lining model and visualize the 3D inspection results. As a result, a 3D inspection report can be outputted automatically containing quantified spalling defect information along with relevant spatial coordinates. The proposed approach has been conducted on several railway tunnels in Yunnan province, China and the experimental results have proved its validity and feasibility.Today, computer vision algorithms are very important for different fields and applications, such as closed-circuit television security, health status monitoring, and recognizing a specific person or object and robotics. Regarding this topic, the present paper deals with a recent review of the literature on computer vision algorithms (recognition and tracking of faces, bodies, and objects) oriented towards socially assistive robot applications. The performance, frames per second (FPS) processing speed, and hardware implemented to run the algorithms are highlighted by comparing the available solutions. Moreover, this paper provides general information for researchers interested in knowing which vision algorithms are available, enabling them to select the one that is most suitable to include in their robotic system applications.

Autoři článku: Pettyboje5418 (Mays Osborne)