Peterssonvangsgaard5436
In the present situation of pandemic, managing diabetes seems to be quite challenging and diabetic patient having COVID-19 infection should follow normal course of antihypertensive and antidiabetic drugs prescribed with the exception of sodium glucose co-transpoters-2 inhibitors which would increase the risk of dehydration and ketoacidosis. In view of above discussion, this article highlights the proposed mechanism of COVID-19 infection linking it with diabetes, antidiabetic drugs to be used in COVID-19 infection along with their advantages, and disadvantages and management of COVID-19 infection diabetic patient.Sustainable solutions are investigated to reduce the environmental damage caused by greenhouse gases and CO2 emissions. Cement is a construction material responsible for greenhouse gases and CO2 emissions. Thus, CO2 emissions are reduced by using replacement materials such as rice husk ash instead of cement. This study investigated the durability and mechanical properties of lightweight and high-performance, sustainable cement-based composites. A foaming agent was used to reduce the unit weight of the mixtures. Also, pumice powder (PP) and rice husk ash (RHA) were used to improve cement-based composites' durability and mechanical properties. The density of mixtures varies between 1666 and 2205 kg/m3. The early age strength of the mixes using 12.5% RHA has increased. The mixtures' compressive strength (91 days) with 25% RHA and 50% PP was 46.6 MPa. As the PP content of mixes increased, drying shrinkage values increased. Expansions decrease as the initial compressive strength increases in mixtures exposed to sulfate. As RHA and PP's ratio increased, weight loss decreased in mixes exposed to HCl, while weight loss increased in mixes exposed to H2SO4. It was determined that the content of CH(OH)2 is important in mixes exposed to HCl and impermeability is important in mixes exposed to H2SO4. It has been observed that the initial compressive strength is also important in mixes exposed to the freeze-thaw effect. As the foam content of the mixes increased, the compressive strength decreased, while the drying shrinkage increased. As a result, using up to 25% RHA has increased the performance of cement-based composites.Massive discharge of wastes produced by the processing of leather so far confers the most important environmental challenge facing the tanneries worldwide. Waste material from tanneries mostly consists of skin remnants and proteinaceous substances as by-products of leather processing. In these conditions, protease-producing bacteria play a vital role in degrading wastes in this sludge. Therefore, an investigation was made to study the effect of long-term tannery sludge contamination on the diversity of both protease-producing microbes and of bacterial extracellular proteases near tanneries of Sambrial and Sialkot. The high amount of carbon and nitrogen in the soil samples reflected their effect on the diversity of the microbial communities in these areas. Phylogenetic analysis based on 16S rRNA gene sequences suggest that the isolated proteolytic bacteria belonged to 9 different genera including Pseudomonas (26.19%), Proteus (19.04%), Serratia (16.66%), Klebsiella (14.28%), Providencia (9.52%), Achromobacter chnological application.In this study, the protective effects of trans-resveratrol (t-resv) against 1,4-dioxane-induced toxicity in meristematic cells were investigated. For this purpose, Allium test was used and the alterations in all experimental groups were examined by using physiological, cytogenetic, biochemical, and anatomical parameters. In order to elucidate the toxicity mechanism, interactions of 1,4-dioxane and intracellular antioxidant molecules were investigated by molecular docking. ART558 chemical structure As a result of the analysis, it was determined that 1,4-dioxane causes serious abnormalities in Allium cepa meristematic cells. In 1,4-dioxane-treated group, germination percentage was regressed 1.6 times, root length was reduced 12.7 times, and weight gain was decreased 7.7 times compared to control group. T-resv administration with 1,4-dioxane resulted in an improvement in physiological parameters and reduced the relative injury rate from 0.4 to 0.16. Mitotic index (MI), micronucleus (MN), and chromosomal abnormality (CAs) frequencies werel changes such as cell deformation, flattened cell nucleus, and thickening of cortex cell wall were observed. The frequency of these changes decreased with t-resv administration. As a result, it was determined that 1,4-dioxane caused a versatile toxicity in A. cepa meristematic cells, while t-resv was found to have a dose-dependent protective feature against 1,4-dioxane-induced toxicity.Monitoring the concentration of particle pollutants is very important for industrial production control and workers' health protection. Low-cost sensors are widely used to reduce deployment costs. The outliers in the observed data of pollutant concentration can be eliminated by outlier detection algorithms. However, it is difficult to meet the actual needs of changing working conditions or scene migration in factories by building a single algorithm for specific scenarios. It is a feasible scheme to identify the changing characteristics of data and adaptively adjust the outlier detection algorithm. From the point of view of data characteristics, we creatively match typical data types with high-performance algorithms. The framework proposed in this paper provides a general process including five basic tasks and uses a modular structure to complete the outlier detection target. The actual pollutant data of the workshops are used to evaluate the performance of our framework. At last, we compare eight different strategies under this framework and analyze the contribution of each step to outlier detection from the perspective of algorithm principle. The results show that low-cost sensors following the framework can meet the outlier detection requirements in the field of pollutant monitoring, thus greatly reducing the cost of algorithm selection and data adaptation.In recent years, there have been many studies on treating pollutants with ultraviolet-activated persulfate (UV/PDS) system. In this paper, the biochemical treatment effluent of landfill leachate from garbage incineration power plant was treated. The effect of treating landfill leachate with UV/PDS system in the low-pressure external device and medium-pressure built-in device was compared; it was concluded that in the latter device, the photon quantity increased, the energy loss decreased, and the probability of generating free radicals in the reaction between photons and S2O82- increased, which result the treatment efficiency of this system was higher. In addition, the leachate was treated by combining the activation method of spinel composite (CuO-MgAl2O4) with UV activation method, called CuO-MgAl2O4/UV/PDS. The experimental data showed that the processing effect of segmented dosing PDS process was higher than that of one-time addition process. Under the same conditions, the removal rates of CODcr were 83.10% and 19.76%, respectively. One of the reasons for this result may be that excessive PDS in CuO-MgAl2O4/PDS system of the latter process inhibited the treatment effect. This paper analyzes the efficiency of UV/PDS system, as well as CuO-MgAl2O4/UV/PDS combination process which were used to treat landfill leachate under different conditions; the results showed that the medium-pressure built-in device and segmented-dosing process could get better treatment effect.Globally, attention has been paid to policies that promote the manufacturing, distribution, and usage of 'cleaner stoves' to minimise the negative impact of inefficient cooking. The key objective of this study is to understand the factors that affect consumer preferences for local or imported improved stoves, identify the underlying factors that influence the performance of locally made improved stoves, and ascertain the weaknesses and strengths of locally made improved stoves. A survey method was applied to collect data across 10 regions of the country from households, restaurants, institutions, retailers, and manufacturers. The survey had a response rate of 86% out of a total of 1500 respondents (consumers). In addition, data was collected from 196 distributors and 35 manufacturers. The study finds that the critical strengths of imported improved stoves are relatively lower emissions, efficiency, and quality. On the other hand, their weaknesses include high prices, inability to meet traditional cooking requirements, limited rural market penetration, long supply chain, and repair turnaround. Locally manufactured improved cookstoves thrive on lower prices, proximity to market and easy repair if needed, potential for new entrants, distribution partnership, and access to rural market.Network-based models of epidemic spread have become increasingly popular in recent decades. Despite a rich foundation of such models, few low-dimensional systems for modeling SIS-type diseases have been proposed that manage to capture the complex dynamics induced by the network structure. We analyze one recently introduced model and derive important epidemiological quantities for the system. We derive the epidemic threshold and analyze the bifurcation that occurs, and we use asymptotic techniques to derive an approximation for the endemic equilibrium when it exists. We consider the sensitivity of this approximation to network parameters, and the implications for disease control measures are found to be in line with the results of existing studies.Oral cavity cancer (OCC) is the predominant subtype of head and neck cancer (HNC) and has up to 50% mortality. Genome-wide microRNA (miR) sequencing data indicates overexpression of miR-9-5p in HNC tumours, however, the biological role of miR-9-5p in OCC is complex; it can either act as a tumour suppressor or an oncomir, regulating many target genes at the post-transcriptional level. We have investigated the overexpression of miR-9-5p in three OCC cell lines. We have evaluated its expression levels and Galectin-3 as potential biomarkers in saliva samples collected from controls and OCC patients. We found that over expression of miR-9-5p in OCC cell lines resulted in a significant reduction in cell proliferation and migration, and an increase in apoptosis, which was paralleled by an increase in Galectin-3 secretion and export of Galectin-3 protein. Our data are consistent with miR-9-5p being a modulator of Galectin-3 via the AKT/γ-catenin pathway. In addition, the positive correlation between the levels of miR-9-5p expression and secreted Galectin-3 in saliva reflects a similar relationship in vivo, and supports the utility of their integrative evaluation in OCC. Our findings indicate that both miR-9-5p and Galectin-3 are critical biomolecules in the progression of OCC.Coronary artery disease (CAD) which is a complex cardiovascular disease is the leading cause of death worldwide. The changing prevalence of the disease in different ethnic groups pointing out the genetic background of CAD. In this study, we aimed to evaluate the contribution of selected cholesterol metabolism-related gene polymorphisms to CAD presence. A total of 493 individuals who underwent coronary angiography were divided into 2 groups normal coronary arteries (≤ 30% stenosis) and critical disease (≥ 50% stenosis). Individuals were genotyped for APOC1 (rs11568822), APOD (rs1568565), LIPA (rs13500), SORL1 (rs2282649), and LDLR (rs5930) polymorphisms using hydrolysis probes in Real-Time PCR. Blood samples were drawn before coronary angiography and biochemical analyses were done. The results were statistically evaluated. When the study group was stratified according to CAD, the minor allele of APOD polymorphism was found related to decreased risk for T2DM in the non-CAD group. In logistic regression analysis adjusted for several confounders, LDLR rs5930 polymorphism was found associated with T2DM presence in the male CAD group [OR = 0.