Petersondahl8688

Z Iurium Wiki

Hurricanes and associated stormwater runoff events are expected to greatly impact coastal marine water quality, yet little is known about their immediate effects on microbiological quality of near-shore water. This study sampled Hilo Bay immediately after the impact of Hurricane Lane to understand the spatial and temporal variations of the abundance and diversity of fecal indicator enterococci, common fecal pathogens, and antibiotic resistance genes (ARGs). Water samples from seven sampling sites over 7 days were collected and analyzed, which showed that the overall microbiological water quality parameters [enterococci geometric mean (GM) 6-22 cfu/100 mL] fell within water quality standards and that the temporal dynamics indicated continuing water quality recovery. However, considerable spatial variation was observed, with the most contaminated site exhibiting impaired water quality (GM = 144 cfu/100 mL). The Enterococcus population also showed distinct genotypic composition at the most contaminated site. Although marker genes for typical fecal pathogens (invA for Salmonella, hipO for Campylobacter, mip for Legionella pneumophila, and eaeA for enteropathogenic Escherichia coli) were not detected, various ARGs (ermB, qurS, tetM, blaTEM, and sul1) and integron-associated integrase intI1 were detected at high levels. Understanding the temporal and spatial variation of microbiological water quality at fine granularity is important for balancing economic and recreational uses of coastal water and the protection of public health post the impact of major hurricane events.Externally applied electric fields have previously been utilized to direct the assembly of colloidal particles confined at a surface into a large variety of colloidal oligomers and nonclose-packed honeycomb lattices (J. TAK-981 ic50 Am. Chem. Soc.2013, 135, 7839-7842). The colloids under such confinement and fields are observed to spontaneously organize into bilayers near the electrode. To extend and better understand how particles can come together to form quasi-two-dimensional materials, we have performed Monte Carlo simulations and complementary experiments of colloids that are strongly confined between two electrodes under an applied alternating current electric field, controlling field strength and particle area fraction. Of particular importance, we control the fraction of particles in the upper vs lower plane, which we describe as asymmetric confinement, and which effectively modulates the coordination number of particles in each plane. We model the particle-particle interactions using a Stockmayer potential to capgredients, which can be analyzed effectively through comparison of simulation, theory, and experiment. Our model further explains possible pathways between different phases and provides a platform for examining phases that have yet to be observed in experiments.Reactive electrospinning is demonstrated as a viable method to create fast-responsive and degradable macroporous thermoresponsive hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA). Hydrazide- and aldehyde-functionalized POEGMA precursor polymers were coelectrospun to create hydrazone cross-linked nanostructured hydrogels in a single processing step that avoids the need for porogens, phase separation-driving additives, or scaffold postprocessing. The resulting nanostructured hydrogels can respond reversibly and repeatedly to changes in external temperature within seconds, in contrast to the minutes-to-hours response time observed with bulk hydrogels. Furthermore, nearly quantitative cell delamination can be achieved within 2 min of incubation at 4 °C, resulting in the recovery of as many or more (as well as more proliferatively active) cells from the substrate relative to the conventional trypsinization protocol. The combined macroporosity, nanoscale feature size, and interfacial switching potential of these nanostructured hydrogels thus offer promise for manipulating cell-hydrogel interactions as well as other applications in which rapid responses to external stimuli are desirable.It has been well established that the early-stage interactions of nanoparticles with cells are governed by the extracellular protein corona. However, after entering into the cells, the evolving protein corona is the key to subsequent processing of nanoparticles by cells. To identify the protein corona around intracellular nanoparticles, it is essential to maintain its original compositions during cell treatment. Herein, we develop a paraformaldehyde (PFA) cross-linking strategy to stabilize corona compositions when extracting protein coronas from cells, providing original information on protein coronas around intercellular gold nanoparticles (AuNPs). The stability of the protein corona after PFA cross-linking was carefully investigated with several characterization methods, and the results demonstrate that PFA cross-linking successfully prevents the dissociation and exchange of corona proteins. Then the recovered intracellular protein corona around AuNPs from living HepG2 cells with a PFA cross-linking strategy was subjected to nanoHPLC-MS/MS for proteomic analysis. It was found that the compositions of intracellular protein coronas are dominated by cell-derived proteins and undergo significant variation of protein species and amounts over time during internalization. Time-resolved analysis provides relevant proteins involved in nanoparticle cellular uptake and transportation, indicating that AuNPs are endocytosed mainly by a clathrin-mediated uptake mechanism and directed into an endolysosomal pathway toward their final destination. Such proteomic-based results are verified by pharmacological inhibition and TEM imaging analysis. This work provides a universal strategy to study compositions of protein corona around intercellular nanoparticles and could be a footstone to link the formation of protein corona around nanoparticles to their biological function in cells.Titanium dioxide (TiO2) nanostructures including nanopores and nanotubes have been fabricated on titanium (Ti)-based orthopedic/dental implants via electrochemical anodization (EA) to enable local drug release and enhanced bioactivity. EA using organic electrolytes such as ethylene glycol often requires aging (repeated anodization of nontarget Ti) to fabricate stable well-ordered nanotopographies. However, limited information is available with respect to its influence on topography, chemistry, mechanical stability, and bioactivity of the fabricated structures. In the current study, titania nanopores (TNPs) using a similar voltage/time were fabricated using different ages of electrolyte (fresh/0 h to 30 h aged). Current density vs time plots of EA, changes in the electrolyte (pH, conductivity, and Ti/F ion concentration), and topographical, chemical, and mechanical characteristics of the fabricated TNPs were compared. EA using 10-20 h electrolytes resulted in stable TNPs with uniform size and improved alignment (parallel to the underlying substrate microroughness).

Autoři článku: Petersondahl8688 (Wren Vester)