Petersabdi3508

Z Iurium Wiki

The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG).

A total of 8 pigs were selected and divided into two groups H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs.

In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events.

The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

The objective of this study was to evaluate the effects of dietary supplementation of Schizosaccharomyces pombe (S. pombe) -expressed phytase on growth performance, apparent ileal digestibility, organ indexes, meat quality, toe ash, and footpad lesions score in broiler chicks.

A total of 390 one-day-old broiler chicks were randomly assigned to 5 groups based on the initial body weight (42.15±0.17 g), there were 6 replicate cages per treatment and 13 birds (mixed sex) per cage. The experimental period was 45 days, including 4 periods (starter, days 1 to 10; grower, days 11 to 24; finisher 1, days 25 to 38; finisher 2, days 39 to 45). Dietary treatments were based on a corn-soybean meal-basal diet and supplemented with 500, 750, 1,000, and 1,500 FTU/kg S. pombe-expressed phytase. One phytase unit (FTU) was defined as the amount of enzyme that catalyzes the release of one micromole phosphate from phytate per minute at 37°C and pH 5.5.

The inclusion of increasing levels of phytase in the diet linearly increased the body weight gain during days 1 to 10 (p = 0.001), 25 to 38 (p = 0.016), 39 to 45 (p = 0.018), and 1 to 45 (p = 0.004), feed intake during days 25 to 38 (p = 0.032), feed conversion ratio during days 1 to 10 (p = 0.001), 39 to 45 (p = 0.038), and 1 to 45 (p = 0.012), carcass weight (p = 0.035), toe ash (p<0.001), and apparent ileal phosphorus digestibility (p = 0.049). However, the footpad lesions score (p = 0.040) decreased linearly with the increase in phytase levels in the diet.

Dietary supplementation of S. pombe-expressed phytase was beneficial to the growth performance, toe ash, apparent ileal phosphorus digestibility, and footpad lesions of broiler chicks in a dose-dependent manner.

Dietary supplementation of S. pombe-expressed phytase was beneficial to the growth performance, toe ash, apparent ileal phosphorus digestibility, and footpad lesions of broiler chicks in a dose-dependent manner.

The objective of this study was to identify polymorphism in olfactomedin like 3 (OLFML3) gene, and association analysis with meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep, and expression quantification of OLFML3 gene in phenotypically divergent sheep.

A total of 328 rams at the age of 10 to 12 months with an average body weight of 26.13 kg were used. A novel polymorphism was identified using high-throughput sequencing in sheep and genotyping of OLFML3 polymorphism was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Among 328 rams, 100 rams representing various sheep genotypes were used for association study and proc general linear model was used to analyse association between genotypes and phenotypic traits. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for the expression analysis of OLFML3 mRNA in phenotypically divergent sheep population.

The findings revealed a novel polymorphism in the cs, retail meat cuts, and fatty acid composition in sheep.

The OLFML3 gene could be a potential putative candidate for selecting higher quality sheep meat, carcass characteristics, retail meat cuts, and fatty acid composition in sheep.

The present study analyzed the influence of co-transferring embryos with high and low cloning efficiencies produced via somatic cell nuclear transfer (SCNT) on pregnancy outcomes in dogs.

Cloned dogs were produced by SCNT using donor cells derived from a Tibetan Mastiff (TM) and Toy Poodle (TP). The in vivo developmental capacity of cloned embryos was evaluated. The pregnancy and parturition rates were determined following single transfer of 284 fused oocytes into 21 surrogates and co-transfer of 47 fused oocytes into four surrogates.

When cloned embryos produced using a single type of donor cell were transferred into surrogates, the pregnancy and live birth rates were significantly higher following transfer of embryos produced using TP donor cells than following transfer of embryos produced using TM donor cells. Next, pregnancy and live birth rates were compared following single and co-transfer of these cloned embryos. Dibenzazepine mw The pregnancy and live birth rates were similar upon co-transfer of embryos and singtil weaning are increased when they are co-transferred with cloned embryos with a greater developmental competence.

This study was aimed to estimate the genetic parameters, including genetic and phenotypic correlations, of milk yield, lactation curve traits and milk composition of Thai dairy cattle from three government research farms.

The data of 25,789 test-day milk yield and milk composition records of 1,468 cattle from lactation 1 to 3 of Holstein Friesian (HF) and crossbred HF dairy cattle calved between 1990 and 2015 from three government research farms in Thailand were analysed. 305-day milk yield was estimated by the Wood model and a test interval method. The Wood model was used for estimating cumulative 305-day milk yield, peak milk yield, days to peak milk yield and persistency. Genetic parameters were estimated using linear mixed models with herd, breed group, year and season of calving as fixed effects, and animals linked to a pedigree as random effects, together with a residual error. Univariate models were used to estimate variance components, heritability, estimated breeding values (EBVs) and repeatabilitage can be improved by including into a selection index.

Our study aimed to investigate the effects of a 2% increase in dietary total digestible nutrients (TDN) value during the growing (7 to 12 mo of age) and fattening (13 to 30 mo of age) period of Hanwoo steers.

Two hundred and twenty Hanwoo steers were assigned to one of two treatments i) a control group (basal TDN, BTDN, n = 111 steers, growing = 70.5%, early fattening = 71.0%, late fattening = 74.0%) or high TDN (HTDN, n = 109 steers, growing = 72.6%, early = 73.1%, late = 76.2%). Growth performance, carcass traits, blood parameters, and gene expression of longissimus dorsi (LD) (7, 18, and 30 mo) were quantified.

Steers on the BTDN diets had increased (p≤0.02) DMI throughout the feeding trial compared to HTDN, but gain did not differ appreciably. A greater proportion of cattle in HTDN received Korean quality grade 1 (82%) or greater compared to BTDN (77%), while HTDN had a greater yield grade (29%) than BTDN (20%). Redness (a*) of LD muscle was improved (p = 0.021) in steers fed HTDN. Feeding the HTDN enterprises.

Our results indicated that feeding HTDN diet could improve overall quality grade while minimum effects were noted in gene expression, blood parameters, and growing performance. Cattle performance prediction in the feedlot is a critical decisionmaking tool for optimal planning of cattle fattening and these data provide both benchmark physiological parameters and growth performance measures for Hanwoo cattle feeding enterprises.

This work was conducted to investigate the effects of oxidative stress on meat quality, mitochondrial function, calcium metabolism and ferroptosis of broilers.

In this study, a total of 144 one-day-old male Ross 308 chicks were divided into 3 groups (control group, saline group, and hydrogen peroxide [H2O2] group) with 6 replicates of 8 broilers each. The study lasted for 42 d. The broilers in the saline and H2O2 groups were intraperitoneally injected with 0.75% saline and 10.0% H2O2 on the 16th and 37th day of the experimental period respectively, the injection volumes were 1.0 mL/kg of broiler body weight. On the 42nd day of the experimental period, two chicks were randomly selected from each cage, a total of thirty-six chicks were stunned by electric shock and slaughtered to collect breast muscle samples.

The H2O2 exposure reduced pH value, increased drip loss and shear force of breast meat (p<0.05), impaired the ultrastructure and function of mitochondria. The H2O2 exposure damaged the antioxidant system in mitochondria, excessive reactive oxygen species carbonylation modified calcium channels on mitochondria, which impaired the activities of key enzymes on calcium channel, resulted in the increased calcium concentration in cytoplasm and mitochondria (p<0.05). In addition, the H2O2 exposure increased the iron content and lipid peroxidation (p<0.05), which induced ferroptosis.

Oxidative stress could impair meat quality by causing mitochondrial dysfunction, resulting in calcium metabolism disorder and ferroptosis.

Oxidative stress could impair meat quality by causing mitochondrial dysfunction, resulting in calcium metabolism disorder and ferroptosis.

This study focused on the effect of dietary metallo-protease and Bacillus velezensis CE 100 on growth performance, carcass parameters, intestinal microflora, footpad dermatitis (FPD), and manure odor in broiler chickens.

One hundred-ten (two-day-old Ross 308) broiler chicks were randomly assigned to five groups with two replicate pens. The dietary treatments were divided to control, metallo-protease groups (A1, added with 0.1%; A2, added with 0.2%) and B. velezensis CE 100 groups (B1, added with 0.5%; B2, added with 1.0%).

The feed intake was decreased in A1 and B2 compared to the other group (p<0.05). The liver weight was lower in B2 than in A2 (p<0.05). The Salmonella in the cecum was decreased in A2 compared to control and A1 (p<0.05). However, the lactic acid bacteria were increased in all treatments (p<0.05). The litter moisture content was decreased in A2, B1, and B2 (p<0.05). The litter quality visual score was increased in all treatments (p<0.05). The FPD score and prevalence were reduced in all treatments (p<0.

Autoři článku: Petersabdi3508 (Munk Wiese)