Perrybuch2067
A clear decrease in the compressive strength after 28 days of curing compared to the reference mortar was recorded after using 30% to 100% of RCA (approx. 26% to approx. 39%). Changes in flexural strength were significantly smaller, reaching no more than approx. MEDICA16 7.5%. It was shown that the amount of RCA translates into the ability to sorb moisture, which may affect the application of this type of composites. The amount of RCA translates also into the thermal conductivity coefficient, which decreased with increasing amount of RCA.The polymer structure of thermoplastic materials currently used to make aligners is altered by the oral conditions and this negatively affects their capacity to move teeth. This study aimed to compare different options for storing aligners when not in use by superimposing successive 3D images to identify which storage method least affects material shape and weight. Fifty PET-G aligners, produced using the CA Digital method, were divided into four groups (1A, 1B, 1C, and 2D) and were stored for 18 h a day in artificial saliva at 37 °C. Then, to mimic their storage conditions when not in use, aligners in group 1A were immersed for the remaining 8 hours a day in bicarbonate solution, those in group 1B in chlorhexidine solution, those in group 1C in distilled water, and those in group 2D were stored dry. The samples were scanned at the baseline (before the immersion cycles began) and again two weeks later. The digital scans were superimposed and the median deformation, its variability, and weight differences were recorded for each group. Statistical analysis showed aligner deformation (expansion) in all three groups stored in wet conditions, with a statistically significant difference between groups 1A and 1C. Aligners in group 2D shrank slightly, and to a significantly greater degree with respect to group 1C. Variability in the degree of deformation was similar among the three groups stored in wet conditions, but significantly greater in group 2D. Weight gains were recorded in all four groups, the smallest in group 2D and the largest in group 1A. Storing aligners in dry conditions promoted lower deformation in the material, involving a slight shrinkage, whereas wet storage conditions caused an expansion of the aligner, especially when distilled water is used.Nanotechnology is used, to an increasing extent, in practically every aspect of the economy and society. One area where nanotechnology is constantly advancing is fire protection. Nanostructures are found in elements used in direct protection, such as in protective clothing, filters, and helmets. Solutions in the field of nanotechnology are also used in elements reducing the fire risk and increasing the fire safety, such as building materials and structures, paints, coatings, or fire safety equipment (e.g., fire detectors). However, new solutions may also pose a threat to the safety of people and the environment. As a result of operation or combustion and degradation processes, the emission of nano-substances with toxic properties may occur. Therefore, knowledge in this field is necessary, as it allows for the appropriate targeting and use of nanotechnology.The aim of the study was to develop and characterise an innovative three-component biopolymer film based on chitosan (CHIT), furcellaran (FUR) and a gelatin hydrolysate from carp skins (Cyprinus carpio) (HGEL). The structure and morphology were characterised using the Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy (AFM). The FT-IR test showed no changes in the matrix after the addition of HGEL, which indicates that the film components were compatible. Based on the obtained AFM results, it was found that the addition of HGEL caused the formation of grooves and cracks on the surface of the film (reduction by ~21%). The addition of HGEL improved the antioxidant activity of the film (improvement by up to 2.318% and 444% of DPPH and FRAP power, respectively). Due to their properties, the tested films were used as active materials in the preservation of American blueberries. In the active films, the blueberries lost mass quickly compared to the synthetic film and were characterised by higher phenol content. The results obtained in this study create the opportunity to use the designed CHIT-FUR films in developing biodegradable packaging materials for food protection, but it is necessary to test their effectiveness on other food products.Mg alloys have mechanical properties similar to those of human bones, and have been studied extensively because of their potential use in biodegradable medical implants. In this study, the influence of different heat treatment regimens on the microstructure and mechanical and corrosion properties of biodegradable Mg-Zn-Ga alloys was investigated, because Ga is effective in the treatment of disorders associated with accelerated bone loss. Solid-solution heat treatment (SSHT) enhanced the mechanical properties of these alloys, and a low corrosion rate in Hanks' solution was achieved because of the decrease in the cathodic-phase content after SSHT. Thus, the Mg-4 wt.% Zn-4 wt.% Ga-0.5 wt.% Y alloy after 18 h of SSHT at 350 °C (ultimate tensile strength 207 MPa; yield strength 97 MPa; elongation at fracture 7.5%; corrosion rate 0.27 mm/year) was recommended for low-loaded orthopedic implants.An experimental investigation is presented for the stress distributions in functionally graded plates containing a circular hole. On the basis of the authors' previously constructed theoretical model, two kinds of graded plates made of discrete rings with increasing or decreasing Young's modulus were designed and fabricated in virtue of multi-material 3D printing. The printed graded plates had accurate size, smooth surface, and good interface. The strains of two graded plates under uniaxial tension were measured experimentally using strain gages. The stresses were calculated within the range of linear elastic from the measured strains and compared with analytical theory. It is found that the experimental results are consistent with the theoretical results, and both of them indicate that the stress concentration around the hole reduces obviously in graded plates with radially increasing Young's modulus, in comparison with that of perforated homogenous plates. The successful experiment in the paper provides a good basis and support for the establishment of theoretical models and promotes the in-depth development of the research field of stress concentration in functionally graded plates.The determination of structural dynamic characteristics can be challenging, especially for complex cases. This can be a major impediment for dynamic load identification in many engineering applications. Hence, avoiding the need to find numerous solutions for structural dynamic characteristics can significantly simplify dynamic load identification. To achieve this, we rely on machine learning. The recent developments in machine learning have fundamentally changed the way we approach problems in numerous fields. Machine learning models can be more easily established to solve inverse problems compared to standard approaches. Here, we propose a novel method for dynamic load identification, exploiting deep learning. The proposed algorithm is a time-domain solution for beam structures based on the recurrent neural network theory and the long short-term memory. A deep learning model, which contains one bidirectional long short-term memory layer, one long short-term memory layer and two full connection layers, is constructed to identify the typical dynamic loads of a simply supported beam. The dynamic inverse model based on the proposed algorithm is then used to identify a sinusoidal, an impulsive and a random excitation. The accuracy, the robustness and the adaptability of the model are analyzed. Moreover, the effects of different architectures and hyperparameters on the identification results are evaluated. We show that the model can identify multi-points excitations well. Ultimately, the impact of the number and the position of the measuring points is discussed, and it is confirmed that the identification errors are not sensitive to the layout of the measuring points. All the presented results indicate the advantages of the proposed method, which can be beneficial for many applications.To explore the failure modes of high-Ni batteries under different axial loads, quasi-static compression and dynamic impact tests were carried out. The characteristics of voltage, load, and temperature of a battery cell with different states of charge (SOCs) were investigated in quasi-static tests. The mechanical response and safety performance of lithium-ion batteries subjected to axial shock wave impact load were also investigated by using a split Hopkinson pressure bar (SHPB) system. Different failure modes of the battery were identified. Under quasi-static axial compression, the intensity of thermal runaway becomes more severe with the increase in SOC and loading speed, and the time for lithium-ion batteries to reach complete failure decreases with the increase in SOC. In comparison, under dynamic SHPB experiments, an internal short circuit occurred after impact, but no violent thermal runaway was observed.The complete understanding of the electromagnetic field characteristics in artificially created bulk or thin media is essential to the efficient harnessing of the multitude of linear and nonlinear effects resulting from it. Due to the fact that recently developed artificial metastructures exhibit controllable electric and magnetic properties that are completely different from natural ones, the spectrum of behavior resulting from subjecting such media to electromagnetic fields has to be revisited. In this paper, we introduce a k-surface framework that offers complete information on the dispersion properties of media with designer electric and magnetic responses with positive and negative values, as well as for the coupling between the two. The extension from the classic k-surface case resides in the consideration of magnetic and bianisotropic materials with positive and negative permittivity and permeability values, as well as the introduction of the chirality coefficient.To illustrate the applicability of our framework, we have investigated the conditions to obtain collinear second harmonic generation in the case of artificial media with positively and negatively valued electric and magnetic responses. As expected, the phase matching tuning curves, defined as the intersections between the k-surfaces at both frequencies, are significantly modified with respect to the classic ones.This article presents issues concerning the relationship between the degradation of the coating of gas turbine blades and changes in the color of its surface. Conclusions were preceded by the determination of parameters characterizing changes in the technical condition of protective coatings made based on a metallographic examination that defined the morphological modifications of the microstructure of the coating, chemical composition of oxides, and roughness parameters. It has been shown that an increased operating time causes parameters that characterize the condition of the blades to deteriorate significantly. Results of material tests were compared with those of blade surface color analyses performed using a videoscope. Image data were represented in two color models, i.e., RGB and L*a*b* with significant differences being observed between parameters in both representations. The study results demonstrated a relationship between the coating degradation degree and changes in the color of the blade's surface.