Peeleaarup6001
Chronic hepatitis B virus (HBV) infection is strongly associated with the initiation and development of hepatocellular carcinoma (HCC). Small Molecule Screening Library However, the genetic alterations and pathogenesis mechanisms remain significantly unexplored, especially for HBV-induced metabolic reprogramming. Analysis of integration breakpoints in HBV-positive HCC samples revealed the preferential clustering pattern within the 3'-end of X gene in the HBV genome, leading to the production of C-terminal truncated X protein (Ct-HBx). In this study, we not only characterized the oncogenic role of two Ct-HBx (HBx-120 and HBx-134) via in vitro and in vivo functional assays but also deciphered their underlying molecular mechanisms. Gene expression profiling by transcriptome sequencing identified potential targets of Ct-HBx and novel malignant hallmarks such as glycolysis, cell cycle, and m-TORC1 signaling in Ct-HBx-expressing cells. TXNIP, a well-established regulator of glucose metabolism, was shown to be downregulated by Ct-HBx and play a pivotal role in Ct-HBx-mediated HCC progression. Suppression of TXNIP is frequently observed in HCC patients with Ct-HBx expression and significantly (P = 0.015) correlated to a poorer prognosis. Re-introduction of TXNIP attenuated the metabolic reprogramming induced by the Ct-HBx and inhibited the tumor growth in the mice model. Further study suggested that Ct-HBx could downregulate TXNIP via a transcriptional repressor nuclear factor of activated T cells 2 (NFACT2). Collectively, our findings indicate that TXNIP plays a critical role in Ct-HBx-mediated hepatocarcinogenesis, serving as a novel therapeutic strategy in HCC treatment.Metastatic melanoma is hallmarked by its ability of phenotype switching to more slowly proliferating, but highly invasive cells. Here, we tested the impact of signal transducer and activator of transcription 3 (STAT3) on melanoma progression in association with melanocyte inducing transcription factor (MITF) expression levels. We established a mouse melanoma model for deleting Stat3 in melanocytes with specific expression of human hyperactive NRASQ61K in an Ink4a-deficient background, two frequent driver mutations in human melanoma. Mice devoid of Stat3 showed early disease onset with higher proliferation in primary tumors, but displayed significantly diminished lung, brain, and liver metastases. Whole-genome expression profiling of tumor-derived cells also showed a reduced invasion phenotype, which was further corroborated by 3D melanoma model analysis. Notably, loss or knockdown of STAT3 in mouse or human cells resulted in the upregulation of MITF and induction of cell proliferation. Mechanistically we show that STAT3-induced CAAT Box Enhancer Binding Protein (CEBP) expression was sufficient to suppress MITF transcription. Epigenetic analysis by ATAC-seq confirmed that CEBPa/b binding to the MITF enhancer region silenced the MITF locus. Finally, by classification of patient-derived melanoma samples, we show that STAT3 and MITF act antagonistically and hence contribute differentially to melanoma progression. We conclude that STAT3 is a driver of the metastatic process in melanoma and able to antagonize MITF via direct induction of CEBP family member transcription.Dysregulation of the Wnt/β-catenin signaling pathway is critically involved in gastric cancer (GC) progression. However, current Wnt pathway inhibitors being studied in preclinical or clinical settings for other cancers such as colorectal and pancreatic cancers are either too cytotoxic or insufficiently efficacious for GC. Thus, we screened new potent targets from β-catenin destruction complex associated with GC progression from clinical samples, and found that scaffolding protein RACK1 deficiency plays a significant role in GC progression, but not APC, AXIN, and GSK3β. Then, we identified its upstream regulator UBE2T which promotes GC progression via hyperactivating the Wnt/β-catenin signaling pathway through the ubiquitination and degradation of RACK1 at the lysine K172, K225, and K257 residues independent of an E3 ligase. Indeed, UBE2T protein level is negatively associated with prognosis in GC patients, suggesting that UBE2T is a promising target for GC therapy. Furthermore, we identified a novel UBE2T inhibitor, M435-1279, and suggested that M435-1279 acts inhibit the Wnt/β-catenin signaling pathway hyperactivation through blocking UBE2T-mediated degradation of RACK1, resulting in suppression of GC progression with lower cytotoxicity in the meantime. Overall, we found that increased UBE2T levels promote GC progression via the ubiquitination of RACK1 and identified a novel potent inhibitor providing a balance between growth inhibition and cytotoxicity as well, which offer a new opportunity for the specific GC patients with aberrant Wnt/β-catenin signaling.Inactivation of Pten gene through deletions and mutations leading to excessive pro-growth signaling pathway activations frequently occurs in cancers. Here, we report a Pten derived pro-cancer growth gene fusion Pten-NOLC1 originated from a chr10 genome rearrangement and identified through a transcriptome sequencing analysis of human cancers. Pten-NOLC1 fusion is present in primary human cancer samples and cancer cell lines from different organs. The product of Pten-NOLC1 is a nuclear protein that interacts and activates promoters of EGFR, c-MET, and their signaling molecules. Pten-NOLC1 promotes cancer proliferation, growth, invasion, and metastasis, and reduces the survival of animals xenografted with Pten-NOLC1-expressing cancer cells. Genomic disruption of Pten-NOLC1 induces cancer cell death, while genomic integration of this fusion gene into the liver coupled with somatic Pten deletion produces spontaneous liver cancers in mice. Our studies indicate that Pten-NOLC1 gene fusion is a driver for human cancers.The mutagenic APOBEC3B (A3B) cytosine deaminase is frequently over-expressed in cancer and promotes tumour heterogeneity and therapy resistance. Hence, understanding the mechanisms that underlie A3B over-expression is important, especially for developing therapeutic approaches to reducing A3B levels, and consequently limiting cancer mutagenesis. We previously demonstrated that A3B is repressed by p53 and p53 mutation increases A3B expression. Here, we investigate A3B expression upon treatment with chemotherapeutic drugs that activate p53, including 5-fluorouracil, etoposide and cisplatin. Contrary to expectation, these drugs induced A3B expression and concomitant cellular cytosine deaminase activity. A3B induction was p53-independent, as chemotherapy drugs stimulated A3B expression in p53 mutant cells. These drugs commonly activate ATM, ATR and DNA-PKcs. Using specific inhibitors and gene knockdowns, we show that activation of DNA-PKcs and ATM by chemotherapeutic drugs promotes NF-κB activity, with consequent recruitment of NF-κB to the A3B gene promoter to drive A3B expression.