Peckcastaneda4002
Low socioeconomic status is associated with a high stroke risk. However, few studies have quantitatively assessed the relationship between stroke burden and national economic development indicators. We explored the quantitative association between macroeconomic development and stroke burden in rural China. In this population-based, prospective study (1992-2016), we collected data on annual registrations of stroke events and deaths in Tianjin, China. Economic development over the period was represented by gross domestic product annually adjusted for purchasing power parity (PPP-aGDP) and per capita net income (PCNI) of rural residents in China. selleck chemical We assessed the association of first-ever stroke incidence with PPP-aGDP and PCNI. During the 25-year study period, there were 1,185 stroke events and 362,296 person years of surveillance. First-ever stroke incidence increased by an average of 10.7% per 1,000 USD increase in overall PPP-aGDP and by 12.0% per 1,000 Yuan increase in PCNI; respectively, the mean increases were 9.6 and 10.8% in men and 13.0 and 14.4% in women (all, P less then 0.001). These same changes in PPP-aGDP and PCNI also resulted in increases in the incidence of ischemic stroke (12.6 and 14.3%, respectively; P less then 0.05), and intracerebral hemorrhage (both, 6.2%; P less then 0.05). Similarly, in men, the age of onset of intracerebral hemorrhage decreased by 0.96-years (P = 0.002) for each 1,000 USD increase in PPP-aGDP and by 1.08-years (P = 0.003) for each 1,000 Yuan increase in PCNI. Macroeconomic development was positively associated with stroke incidence in rural China. Thus, enhancing health-care investments is crucial for containing the stroke burden during this remarkable economic development in China. Our findings could guide other developing countries with information regarding the timely control of stroke risk factors and reductions in stroke burden during the initial stages of economic development.Objectives To evaluate the performance of the Peruvian version of the Rowland Universal Dementia Assessment Scale (RUDAS-PE) in discriminating between controls and patients with mild cognitive impairment (MCI) and dementia in an illiterate population with low-levels of education. Methods We compared the cognitive performance of 187 elderly subjects who were illiterate (controls n = 60; MCI n = 64; dementia n = 63). Neuropsychological measures included the RUDAS-PE, Mini-Mental State Examination (MMSE), INECO Frontal Screening (IFS), and Pfeffer Functional Activities Questionnaire (PFAQ). The results were compared to a neuropsychological evaluation (gold standard), including use of Clinical Dementia Rating (CDR) scores. Results We found a Cronbach's alpha was 0.65; Spearman's correlation coefficient was 0.79 (p less then 0.01). The area under the receiver operating characteristics curve for the RUDAS to discriminate dementia from MCI was 98.0% with an optimal cut-off less then 19 (sensitivity 95%, specificity 97%); whereas, to differentiate MCI and controls was 98.0% with an optimal cut-off less then 23 (sensitivity 89%, specificity 93%). Conclusions Based on its excellent psychometric properties, we find the RUDAS-PE suitable to aid in the opportune detection of dementia in a geriatric illiterate population with low-levels of education.Heat stroke (HS) is the most acute type of heat illness accompanied with serious central nervous system (CNS) dysfunction. Despite the pathological process being clearly studied, effective treatment is deficient. Currently, mesenchymal stem cells (MSCs) have been demonstrated to have neuroprotective effects as there are no old ones. Thus, the purpose of the present study was to explore the neuroprotective effects and mechanisms of MSCs against HS-induced CNS injury. HS in rat models was induced by a high-temperature environment and treated with MSCs via the tail vein. The results demonstrated that MSC injection significantly reduced the mortality and inhibited the circulation inflammatory response. Moreover, the HS-induced neurological deficit and neuronic damage of the hippocampus were significantly ameliorated by MSC administration. In addition, MSC administration significantly restored astrocytes and inhibited cerebral inflammatory response. These results indicate that MSC infusion has therapeutic effects in HS of rats by regulating the circulation and cerebral inflammatory response. Moreover, astrocytes increased in MSC-treated HS rats when compared with the untreated ones. This may suggest a potential mechanism for HS prevention and therapy through MSC administration.The locus coeruleus (LC) is a small brainstem nucleus with widely distributed noradrenergic projections to the whole brain, and loss of LC neurons is a prominent feature of age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This article discusses the hypothesis that in early stages of neurodegenerative diseases, the discharge mode of LC neurons could be changed to a persistent high tonic discharge, which in turn might impair phasic discharge. Since phasic discharge of LC neurons is required for the release of high amounts of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective effects, persistent high tonic discharge of LC neurons could be a key factor in the progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS), a non-invasive technique that potentially increases phasic discharge of LC neurons, could therefore provide a non-pharmacological treatment approach in specific disease stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses the hypothesis that a persistent high tonic discharge of LC neurons might affect neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical tool in specific stages of AD and PD.We propose a novel pharmacological fMRI (phMRI) method for objectively quantifying disease severity in Parkinson disease (PD). It is based on the clinical observation that the benefit from a dose of levodopa wears off more quickly as PD progresses. Biologically this has been thought to represent decreased buffering capacity for dopamine as nigrostriatal cells die. Buffering capacity has been modeled based on clinical effects, but clinical measurements are influenced by confounding factors. The new method proposes to measure the effect objectively based on the timing of the known response of several brain regions to exogenous levodopa. Such responses are robust and can be quantified using perfusion MRI. Here we present simulation studies based on published clinical dose-response data and an intravenous levodopa infusion. Standard pharmacokinetic-pharmacodynamic methods were used to model the response. Then the effect site rate constant k e was estimated from simulated response data plus Gaussian noise. Predicted time - effect curves sampled at times consistent with phMRI differ substantially based on clinical severity.