Paynezimmerman3357
Simulated microgravity can significantly affect various cell types and multiple systems of the human body, such as cardiovascular system, skeletal muscle system, and immune system, and is known to cause anemia and loss of electrolyte and fluids. Epidermal stem cells (EpSCs) were cultured in a rotary cell culture system (RCCS) bioreactor to simulate microgravity. The metabolites of EpSCs were identified by liquid chromatography-mass spectrometry (LC-MS). Compared with normal gravity (NG) group, a total of 57 different metabolites of EpSCs were identified (P 1 and P less then 0.05 were obtained for the 57 different metabolites, of which 23 molecules were significantly downregulated and 34 were significantly upregulated in simulated microgravity (SMG) group. These results showed that SMG has a significant impact on different pathways, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that multiple pathways were involved, mainly the amino acid metabolism pathway, lipid metabolism pathway, membrane transport pathway, and cell growth and death pathways. Thus, the metabolic profile of EpSCs was changed under SMG. Exploring the metabolic profile of EpSCs would be helpful to further understand the growth characteristics of EpSCs under SMG, which will provide a new approach to explore the metabolomics mechanism of stress injury and repair trauma under SMG.BACKGROUND Replication studies are essential for identifying credible associations between alleles and phenotypes. Validation of genotype-phenotype associations in the sports and exercise field is rare. An initial genetic association study suggested that rs1049305 (C > G) in the 3' untranslated region (3'UTR) of the aquaporin-1 (AQP1) gene was associated with marathon running (MR) performance level in Hispanic males. To validate this finding, we conducted a replication analysis in an independent case-control sample of Hispanic male marathon runners (n = 1430; cases n = 713 and controls n = 717). A meta-analysis was utilized to test the extent of the association between the initial results and the present report. It also provided to test the heterogeneity (variation) between the two studies. RESULTS The replication study showed a statistically significant (p ≤ 0.05) association between rs1049305 (C > G) of the AQP1 gene and MR performance level. Association test results using a fixed effect model for the combihenotype of MR performance level.BACKGROUND Dietary fiber has played a consistent role in weight management, with efficacy potentially attributed to increased viscous fiber consumption. PURPOSE To summarize the effects of viscous fiber on body weight and other anthropometric parameters, along with a calorie-deficient diet, through a systematic review and meta-analysis. METHODS MEDLINE, EMBASE, and the Cochrane library were searched through July 24, 2019 for randomized controlled trials that assessed the effect of viscous fiber supplementation as part of a restricted calorie diet for ≥ 4 weeks relative to comparator diets. Data were pooled using the generic inverse-variance method with random-effects models and expressed as mean differences with 95% confidence intervals. Inter-study heterogeneity was assessed using Cochran's Q and quantified with I2. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to evaluate the overall certainty of evidence. RESULTS Findings from 15 studies (n = 1347) showed viscous fiber supplementation significantly decreased body weight (- 0.81 kg [- 1.20, - 0.41]; p less then 0.0001), BMI (- 0.25 kg/m2 [- 0.46, - 0.05]; p = 0.01), and body fat (- 1.39% [- 2.61, - 0.17]; p = 0.03), compared to control. No effect on waist circumference was found. The certainty of evidence was graded as "moderate" for body weight, BMI, and body fat based on downgrades for imprecision. Waist circumference was graded "low" for downgrades of inconsistency and imprecision. CONCLUSION Viscous fiber within a calorie-restricted diet significantly improved body weight and other markers of adiposity in overweight adults and those with additional risk factors for cardiovascular disease. This trial is registered at www.clinicaltrials.gov as NCT03257449. REGISTRATION ClinicalTrials.gov identifier NCT03257449.The original version of this article unfortunately contained a mistake. The family name of "Israel Júnior Borges do Nascimento" was incorrect.PURPOSE To investigate associations of total dietary choline intake and its major dietary form, phosphatidylcholine, with type 2 diabetes risk. METHODS We included 2332 men aged 42-60 years at baseline in 1984-1989 from the Kuopio Ischaemic Heart Disease Risk Factor Study in eastern Finland. Dietary intakes were assessed with 4-d food recording at baseline. Type 2 diabetes diagnosis was based on self-administered questionnaires, fasting and 2-h oral glucose tolerance test blood glucose measurements, or by record linkage to national health registries. Multivariable-adjusted Cox proportional hazards regression models were used for statistical analysis. RESULTS During the mean 19.3-year follow-up, 432 men had type 2 diabetes diagnosis. After multivariable adjustments, those in the highest vs. lowest choline intake quartile had 25% (95% CI 2-43%) lower relative risk (P trend across quartiles = 0.02) and those in the highest vs. lowest phosphatidylcholine quartile had 41% (95% CI 22-55%) lower relative risk (P trend less then 0.001) of type 2 diabetes. CONCLUSIONS Higher choline intake, especially phosphatidylcholine, was associated with lower type 2 diabetes risk among men.Tracheal intubation constitutes a routine part in the care of critically ill and anaesthetised patients. Prolonged use of endotracheal with inflated cuff is one of the major multifactorial causes of complications. Both under-inflation and over-inflation of cuff are associated with complications. Despite known problems, regular measurement of cuff pressure is not routine, and it is performed on an ad hoc basis.In a novel approach, curcumin has been encapsulated inside Poly(Ethylene Oxide)-Block-Poly(Propylene Oxide)-Block-Poly(Ethylene Oxide) (F108) nanocapsules. FTIR spectra have indicated a type of hydrogen bonding and dipole interaction between curcumin and F108. Fluorescence and UV-visible absorption profiles of curcumin in nanocapsules have indicated location of curcumin in more hydrophobic microenvironment. The relative fluorescence yield has increased by 6 times in the nanocapsules, which renders them as more sensitive probes to be used later on in sensing study. Therefore, based on the functionality of curcumin as a fluorescent transducer, encapsulated curcumin is used in biomedical application as DNA and RNA sensing. U73122 Detection limits are detected as 50 μM and 60 μM for DNA and RNA respectively. Linear dynamic concentration range obtained in this proposed method is much higher than reported in literature. The interaction between the nanocapsules and targeted DNA/RNA molecules is further approved by zeta potential studies.