Paulconley5106
Objective Movement efficiency can be quantified during physical tasks by measuring the rate of change of acceleration (jerk). Jerk captures the smoothness of a motion and has been used to quantify movement for upper extremity and torso-based tasks. We collected triaxial accelerometer data during four physical tasks commonly performed in the work place to determine if jerk increases with physiologic strain. Methods Participants completed a circuit of activities that mimicked the demands of manual labor in hot (40°C) and temperate (18°C) conditions. The circuit included walking on a treadmill carrying a load on the shoulder, lifting objects from the floor to the table, using a dead blow to strike the end of a heavy steel beam, and a kneeling rope pull. After the 9 min circuit, the participant had a standing rest for 1 min before repeating the circuit 3 additional times. Participants were instrumented with four 3-axis accelerometers (Actigraph wGT3X) secured to the torso, wrist, and upper arm. Results There were 20 trials in the hot condition and 12 trials in the temperate condition. Heart rate and core body temperature increased during both protocols (p less then 0.001). Measures of jerk varied by accelerometer location and activity. During treadmill walking, the wrist, torso, arm accelerometers measured higher jerk during the fourth circuit in the hot condition. During the lifting task, mean jerk increased in the hot condition in all accelerometers. Max jerk increased in the temperate condition in the arm accelerometer and jerk cost increased in the hot condition in the torso and arm accelerometers. Conclusions Forty minutes of paced work performed in the heat resulted in increased acceleration and jerk in accelerometers placed on the torso, arm, and wrist. The accelerometers most consistently reporting these changes were task specific and suggest that a limited number of worn sensors could identify the onset of fatigue and increased injury risk.We recently discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GM (NPGM), in the mediobasal hypothalamus of chickens. Although our previous study showed that subcutaneous infusion of NPGM for 6 days increased body mass in chicks, the chronic effect of intracerebroventricular (i.c.v.) infusion of NPGM remains unknown. In this study, we performed i.c.v. administration of NPGM in eight-day-old layer chicks using osmotic pumps for 2 weeks. In the results, chronic i.c.v. infusion of NPGM significantly increased body mass, water intake, and the mass of abdominal and gizzard fat in chicks, whereas NPGM did not affect food intake, liver and muscle masses, or blood glucose concentration. Morphological analyses using Oil Red O and hematoxylin-eosin stainings revealed that fat accumulation occurred in both the liver and gizzard fat after NPGM infusion. The real-time PCR analysis showed that NPGM decreased the mRNA expression of peroxisome proliferator-activated receptor α, a lipolytic factor in the liver. These results indicate that NPGM may participate in fat storage in chicks.Introduction Aging has many effects on the cardiovascular system, including changes in structure (aortic composition, and thus stiffening) and function (increased proximal blood pressure, and thus cardiac afterload). Mouse models are often used to gain insight into vascular aging and mechanisms of disease as they allow invasive assessments that are impractical in humans. Translation of results from murine models to humans can be limited, however, due to species-specific anatomical, biomechanical, and hemodynamic differences. In this study, we built fluid-solid-interaction (FSI) models of the aorta, informed by biomechanical and imaging data, to compare wall mechanics and hemodynamics in humans and mice at two equivalent ages young and older adults. Methods For the humans, 3-D computational models were created using wall property data from the literature as well as patient-specific magnetic resonance imaging (MRI) and non-invasive hemodynamic data; for the mice, comparable models were created using population-based properties and hemodynamics as well as subject-specific anatomies. Global aortic hemodynamics and wall stiffness were compared between humans and mice across age groups. Results For young adult subjects, we found differences between species in pulse pressure amplification, compliance and resistance distribution, and aortic stiffness gradient. We also found differences in response to aging between species. Generally, the human spatial gradients of stiffness and pulse pressure across the aorta diminished with age, while they increased for the mice. Conclusion These results highlight key differences in vascular aging between human and mice, and it is important to acknowledge these when using mouse models for cardiovascular research.The dorsal motor nucleus of the vagus (DMV) contains preganglionic motor neurons important for interpreting sensory input from the periphery, integrating that information, and coding the appropriate parasympathetic (vagal) output to target organs. Despite the critical role of hormonal regulation of vagal motor output, few studies examine the role of neurosteroids in the regulation of the DMV. Of the few examinations, no studies have investigated the potential impact of allopregnanolone (Allo), a neuroactive progesterone-derivative, in the regulation of neurotransmission on the DMV. Since DMV neuronal function is tightly regulated by GABAA receptor activity and Allo is an endogenous GABAA receptor ligand, the present study used in vitro whole cell patch clamp to investigate whether Allo alters GABAergic neurotransmission to DMV neurons. Although Allo did not influence GABAergic neurotransmission during initial application (5-20 min), a TTX-insensitive prolongment of decay time and increase in frequency of GABAergic currents was established after Allo was removed from the bath for at least 30 min (LtAllo). Inhibition of protein kinase C (PKC) abolished these effects, suggesting that PKC is largely required to mediate Allo-induced inhibition of the DMV. Oseltamivir price Using mice that lack the δ-subunit of the GABAA receptor, we further confirmed that PKC-dependent activity of LtAllo required this subunit. Allo also potentiated GABAA receptor activity after a repeated application of δ-subunit agonist, suggesting that the presence of Allo encodes stronger δ-subunit-mediated inhibition over time. Using current clamp recording, we demonstrated that LtAllo-induced inhibition is sufficient to decrease action potential firing and excitability within DMV neurons. We conclude that the effects of LtAllo on GABAergic inhibition are dependent on δ-subunit and PKC activation. Taken together, DMV neurons can undergo long lasting Allo-dependent GABAA receptor plasticity.Probabilistic estimation of cardiac electrophysiological model parameters serves an important step toward model personalization and uncertain quantification. The expensive computation associated with these model simulations, however, makes direct Markov Chain Monte Carlo (MCMC) sampling of the posterior probability density function (pdf) of model parameters computationally intensive. Approximated posterior pdfs resulting from replacing the simulation model with a computationally efficient surrogate, on the other hand, have seen limited accuracy. In this study, we present a Bayesian active learning method to directly approximate the posterior pdf function of cardiac model parameters, in which we intelligently select training points to query the simulation model in order to learn the posterior pdf using a small number of samples. We integrate a generative model into Bayesian active learning to allow approximating posterior pdf of high-dimensional model parameters at the resolution of the cardiac mesh. We further introduce new acquisition functions to focus the selection of training points on better approximating the shape rather than the modes of the posterior pdf of interest. We evaluated the presented method in estimating tissue excitability in a 3D cardiac electrophysiological model in a range of synthetic and real-data experiments. We demonstrated its improved accuracy in approximating the posterior pdf compared to Bayesian active learning using regular acquisition functions, and substantially reduced computational cost in comparison to existing standard or accelerated MCMC sampling.Electrical conduction in cardiac ventricular tissue is regulated via sodium (Na+) channels and gap junctions (GJs). We and others have recently shown that Na+channels preferentially localize at the site of cell-cell junctions, the intercalated disc (ID), in adult cardiac tissue, facilitating coupling via the formation of intercellular Na+nanodomains, also termed ephaptic coupling (EpC). Several properties governing EpC vary with age, including Na+channel and GJ expression and distribution and cell size. Prior work has shown that neonatal cardiomyocytes have immature IDs with Na+channels and GJs diffusively distributed throughout the sarcolemma, while adult cells have mature IDs with preferentially localized Na+channels and GJs. In this study, we perform an in silico investigation of key age-dependent properties to determine developmental regulation of cardiac conduction. Simulations predict that conduction velocity (CV) biphasically depends on cell size, depending on the strength of GJ coupling. Total cell Na+channel conductance is predictive of CV in cardiac tissue with high GJ coupling, but not correlated with CV for low GJ coupling. We find that ephaptic effects are greatest for larger cells with low GJ coupling typically associated with intermediate developmental stages. Finally, simulations illustrate how variability in cellular properties during different developmental stages can result in a range of possible CV values, with a narrow range for both neonatal and adult myocardium but a much wider range for an intermediate developmental stage. Thus, we find that developmental changes predict associated changes in cardiac conduction.The objective of the present study was to evaluate the effect of protected organic acids (OA) and essential oils (EO) [P(OA + EO)] on the intestinal health of broiler chickens raised under field conditions. The study was conducted on four commercial farms. Each farm consisted of four barns, two barns under a control diet and two tested barns supplemented with P(OA + EO), totaling 16 barns [8 control and 8 under P(OA + EO)]. The control group was supplemented with antibiotic growth promoters [AGP; Bacitracin Methylene Disalicylate (50 g/ton) during starter, grower and finisher 1, and flavomycin (2 g/ton) during finisher 2]. The tested group was supplemented with 636, 636, 454, and 454 g/ton of P(OA + EO) during starter, grower, finisher 1 and 2, respectively. Eighty birds were necropsied (40/treatment; 20/farm; and 5/barn) to collect blood, jejunal tissue, and cecal contents. The data were submitted to analysis of variance (ANOVA) (P less then 0.05) or Kruskal-Wallis' test and the frequency of antimicrobial ly reduced the serum concentration of several inflammatory biomarkers, while maintaining the diversity and composition of the cecal microbiota similar to AGP fed chickens and reducing the prevalence of AMR genes.