Pattonbreum9204
function in atherosclerosis processes.Sperm cryopreservation is an assisted reproductive technique routinely used in canine species for genetic conservation. However, during cryopreservation, the DNA damages are still elevated, limiting the fertilization rate. The present study was conducted to evaluate whether supplementation of canine semen extender with a molecule limiting the metabolic activities can improve the quality of frozen-thawed canine spermatozoa. We used metformin, known to limit the mitochondrial respiratory and limit the oxidative stress. Before and during the freezing procedure, metformin (50µM and 500µM) has been added to the extender. After thawing, sperm exposed to metformin conserved the same viability without alteration in the membrane integrity or acrosome reaction. Interestingly, 50µM metformin improved the sperm motility in comparison to the control, subsequently increasing mitochondrial activity and NAD+ content. DEG-77 clinical trial In addition, the oxidative stress level was reduced in sperm treated with metformin improving the sperm quality as measured by a different molecular marker. In conclusion, we have shown that metformin is able to improve the quality of frozen-thawed dog semen when it is used during the cryopreservative procedure.In vitro neutralizing antibodies have been often correlated with protection against Rift Valley fever virus (RVFV) infection. We have reported previously that a single inoculation of sucrose-purified modified vaccinia Ankara (MVA) encoding RVFV glycoproteins (rMVAGnGc) was sufficient to induce a protective immune response in mice after a lethal RVFV challenge. Protection was related to the presence of glycoprotein specific CD8+ cells, with a low-level detection of in vitro neutralizing antibodies. In this work we extended those observations aimed to explore the role of humoral responses after MVA vaccination and to study the contribution of each glycoprotein antigen to the protective efficacy. Thus, we tested the efficacy and immune responses in BALB/c mice of recombinant MVA viruses expressing either glycoprotein Gn (rMVAGn) or Gc (rMVAGc). In the absence of serum neutralizing antibodies, our data strongly suggest that protection of vaccinated mice upon the RVFV challenge can be achieved by the activation of cellular responses mainly directed against Gc epitopes. The involvement of cellular immunity was stressed by the fact that protection of mice was strain dependent. Furthermore, our data suggest that the rMVA based single dose vaccination elicits suboptimal humoral immune responses against Gn antigen since disease in mice was exacerbated upon virus challenge in the presence of rMVAGnGc or rMVAGn immune serum. Thus, Gc-specific cellular immunity could be an important component in the protection after the challenge observed in BALB/c mice, contributing to the elimination of infected cells reducing morbidity and mortality and counteracting the deleterious effect of a subneutralizing antibody immune response.Approximately 3 × 1017 DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron-sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the presence of both 5',8-cyclo-2'-deoxyadenosine (cdA) diastereomers in the ds-DNA structure, as part of a clustered lesion, can influence vertical radical cation distribution within the proximal part of the double helix, i.e., d[~oxoGcAoxoG~] (7,8-dihydro-8-oxo-2'-deoxyguaosine - oxodG). Here, the influence of cdA, "the simplest tandem lesion", on the charge transfer through ds-DNA was taken into theoretical consideration at the M062x/6-31+G** level of theory in the aqueous phase. It was shown that the presence of (5'S)- or (5'R)-cdA leads to a slowdown in the hole transfer by one order of magnitude between the neighboring dGoxodG in comparison to "native" ds-DNA. Therefore, it can be concluded that such clustered lesions can lead to defective damage recognition with a subsequent slowing down of the DNA repair process, giving rise to an increase in mutations. As a result, the unrepaired, oxodG dA base pair prior to genetic information replication can finally result in GC TA or ATCG transversion. This type of mutation is commonly observed in human cancer cells. Moreover, because local multiple damage sites (LMSD) are effectively produced as a result of ionization factors, the presented data in this article might be useful in developing a new scheme of radiotherapy treatment against the background of DNA repair efficiency.Vaccination against tick-borne encephalitis (TBE) is based on the use of formalin-inactivated, culture-derived whole-virus vaccines. Immune response following vaccination is primarily directed to the viral envelope (E) protein, the major viral surface antigen. In Europe, two TBE vaccines are available in adult and pediatric formulations, namely FSME-IMMUN® (Pfizer) and Encepur® (GlaxoSmithKline). Herein, we analyzed the content of these vaccines using mass spectrometry (MS). The MS analysis revealed that the Encepur vaccine contains not only proteins of the whole virus particle, but also viral non-structural protein 1 (NS1). MS analysis of the FSME-IMMUN vaccine failed due to the high content of human serum albumin used as a stabilizer in the vaccine. However, the presence of NS1 in FSME-IMMUN was confirmed by immunization of mice with six doses of this vaccine, which led to a robust anti-NS1 antibody response. NS1-specific Western blot analysis also detected anti-NS1 antibodies in sera of humans who received multiple doses of either of these two vaccines; however, most vaccinees who received ≤3 doses were negative for NS1-specific antibodies. The contribution of NS1-specific antibodies to protection against TBE was demonstrated by immunization of mice with purified NS1 antigen, which led to a significant (p less then 0.01) prolongation of the mean survival time after lethal virus challenge. This indicates that stimulation of anti-NS1 immunity by the TBE vaccines may increase their protective effect.