Patejamison8292
This work proposes a new solvent system composed of a molten salt in pressurized water, so-called hydrothermal molten salt (HyMoS). This system changes the paradigm of the solubility of inorganics in supercritical water. Using as an example NaOH, a low melting temperature salt, we show the possibility to precipitate it at a temperature above its melting one, leading to the instantaneous formation of the HyMoS. The molten salt is then capable of dissolving a large amount of inorganic salt, as exemplified with Na2SO4. This solvent system opens innovative ways with a potential to impact applications in many fields including materials synthesis, biomass conversion, recycling, green chemistry, catalysis, sustainable manufacturing and others. Beyond the impact on the hydrothermal community, this work also offers previously unexplored opportunities for the molten salt field with access to flow chemistry and insights regarding salt precipitation mechanism.The locally accumulated damage by tropical cyclones (TCs) can intensify substantially when these cyclones move more slowly. While some observational evidence suggests that TC motion might have slowed significantly since the mid-20th century (1), the robustness of the observed trend and its relation to anthropogenic warming have not been firmly established (2-4). Using large-ensemble simulations that directly simulate TC activity, we show that future anthropogenic warming can lead to a robust slowing of TC motion, particularly in the midlatitudes. The slowdown there is related to a poleward shift of the midlatitude westerlies, which has been projected by various climate models. Although the model's simulation of historical TC motion trends suggests that the attribution of the observed trends of TC motion to anthropogenic forcings remains uncertain, our findings suggest that 21st-century anthropogenic warming could decelerate TC motion near populated midlatitude regions in Asia and North America, potentially compounding future TC-related damages.Cells' ability to apply contractile forces to their environment and to sense its mechanical properties (e.g., rigidity) are among their most fundamental features. Yet, the interrelations between contractility and mechanosensing, in particular, whether contractile force generation depends on mechanosensing, are not understood. We use theory and extensive experiments to study the time evolution of cellular contractile forces and show that they are generated by time-dependent actomyosin contractile displacements that are independent of the environment's rigidity. Consequently, contractile forces are nonmechanosensitive. We further show that the force-generating displacements are directly related to the evolution of the actomyosin network, most notably to the time-dependent concentration of F-actin. The emerging picture of force generation and mechanosensitivity offers a unified framework for understanding contractility.The nonreciprocity of propagating spin waves, i.e., the difference in amplitude and/or frequency depending on the propagation direction, is essential for the realization of spin wave-based logic circuits. However, the nonreciprocal frequency shifts demonstrated so far are not large enough for applications because they originate from interfacial effects. In addition, switching of the spin wave nonreciprocity in the electrical way remains a challenging issue. selleckchem Here, we show a switchable giant nonreciprocal frequency shift of propagating spin waves in interlayer exchange-coupled synthetic antiferromagnets. The observed frequency shift is attributed to large asymmetric spin wave dispersion caused by a mutual dipolar interaction between two magnetic layers. Furthermore, we find that the sign of the frequency shift depends on relative configuration of two magnetizations, based on which we demonstrate an electrical switching of the nonreciprocity. Our findings provide a route for switchable and highly nonreciprocal spin wave-based applications.Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm-2), in which Cu0.9Ni0.1 shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm-2. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties.Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high-spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.