Parsonslangballe8548

Z Iurium Wiki

Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P  less then  5 × 10-8) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (rG = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.Surgical resection of tumours requires precisely locating and defining the margins between lesions and normal tissue. However, this is made difficult by irregular margin borders. Although molecularly targeted optical contrast agents can be used to define tumour margins during surgery in real time, the selectivity of the contrast agents is often limited by the target being expressed in both healthy and tumour tissues. Here, we show that AND-gate optical imaging probes that require the processing of two substrates by multiple tumour-specific enzymes produce a fluorescent signal with significantly improved specificity and sensitivity to tumour tissue. We evaluated the performance of the probes in mouse models of mammary tumours and of metastatic lung cancer, as well as during fluorescence-guided robotic surgery. Imaging probes that rely on multivariate activation to selectively target complex patterns of enzymatic activity should be useful in disease detection, treatment and monitoring.For patients with drug-resistant focal epilepsy, excision of the epileptogenic zone is the most effective treatment approach. see more However, the surgery is less effective in the 15-30% of patients whose lesions are not distinct when visualized by magnetic resonance imaging (MRI). Here, we show that an intravenously administered MRI contrast agent consisting of a paramagnetic polymer coating encapsulating a superparamagnetic cluster of ultrasmall superparamagnetic iron oxide crosses the blood-brain barrier and improves lesion visualization with high sensitivity and target-to-background ratio. In kainic-acid-induced mouse models of drug-resistant focal epilepsy, electric-field changes in the brain associated with seizures trigger breakdown of the contrast agent, restoring the T1-weighted magnetic resonance signal, which otherwise remains quenched due to the distance-dependent magnetic resonance tuning effect between the cluster and the coating. The electric-field-responsive contrast agent may increase the probability of detecting seizure foci in patients and facilitate the study of brain diseases associated with epilepsy.Prime editing enables diverse genomic alterations to be written into target sites without requiring double-strand breaks or donor templates. The design of prime-editing guide RNAs (pegRNAs), which must be customized for each edit, can however be complex and time consuming. Compared with single guide RNAs (sgRNAs), pegRNAs have an additional 3' extension composed of a primer binding site and a reverse-transcription template. Here we report a web tool, which we named pegFinder ( http//pegfinder.sidichenlab.org ), for the rapid design of pegRNAs from reference and edited DNA sequences. pegFinder can incorporate sgRNA on-target and off-target scoring predictions into its ranking system, and nominates secondary nicking sgRNAs for increasing editing efficiency. CRISPR-associated protein 9 variants with expanded targeting ranges are also supported. To facilitate downstream experimentation, pegFinder produces a comprehensive table of candidate pegRNAs, along with oligonucleotide sequences for cloning.Clinical scores, molecular markers and cellular phenotypes have been used to predict the clinical outcomes of patients with glioblastoma. However, their clinical use has been hampered by confounders such as patient co-morbidities, by the tumoral heterogeneity of molecular and cellular markers, and by the complexity and cost of high-throughput single-cell analysis. Here, we show that a microfluidic assay for the quantification of cell migration and proliferation can categorize patients with glioblastoma according to progression-free survival. We quantified with a composite score the ability of primary glioblastoma cells to proliferate (via the protein biomarker Ki-67) and to squeeze through microfluidic channels, mimicking aspects of the tight perivascular conduits and white-matter tracts in brain parenchyma. The assay retrospectively categorized 28 patients according to progression-free survival (short-term or long-term) with an accuracy of 86%, predicted time to recurrence and correctly categorized five additional patients on the basis of survival prospectively. RNA sequencing of the highly motile cells revealed differentially expressed genes that correlated with poor prognosis. Our findings suggest that cell-migration and proliferation levels can predict patient-specific clinical outcomes.The WNT-β-catenin system is an evolutionary conserved signalling pathway that is of particular importance for morphogenesis and cell organization during embryogenesis. The system is usually suppressed in adulthood; however, it can be re-activated in organ injury and regeneration. WNT-deficient mice display severe kidney defects at birth. Transient WNT-β-catenin activation stimulates tissue regeneration after acute kidney injury, whereas sustained (uncontrolled) WNT-β-catenin signalling promotes kidney fibrosis in chronic kidney disease (CKD), podocyte injury and proteinuria, persistent tissue damage during acute kidney injury and cystic kidney diseases. Additionally, WNT-β-catenin signalling is involved in CKD-associated vascular calcification and mineral bone disease. The WNT-β-catenin pathway is tightly regulated, for example, by proteins of the Dickkopf (DKK) family. In particular, DKK3 is released by 'stressed' tubular epithelial cells; DKK3 drives kidney fibrosis and is associated with short-term risk of CKD progression and acute kidney injury.

Autoři článku: Parsonslangballe8548 (Quinlan Munch)