Parrottfields0031

Z Iurium Wiki

Pathogens are able to alter the cell cycle program and immune response of the host by changing the transcription and epigenetics of genes responsible for cell cycle control and inflammation. In this regard, we evaluated interrelations between DNA methylation and expression of autophagy, apoptosis, and lipid metabolism-related genes in a sample set of mammary gland secretory tissue sections derived from bovine mammary glands infected with coagulase-negative and coagulase-positive staphylococci. We assessed relative transcript abundance and DNA bisulfite sequencing in loci of the ATG5, IGF1R, TERT, and DGAT1 genes. Lack of DNA methylation in ATG5 and DGAT1 loci might be associated with maintenance of ATG5 and DGAT1 expression regardless of the health status of bovine mammary gland. Complete methylation of intragenic CpG regions in the IGF1R locus was apparently not related to the presence of its transcript in the investigated udder parenchyma samples. Detected hypermethylation of the TERT upstream element was associated with a small amount of TERT mRNA in bovine mammary gland, regardless of the presence, or absence, of the pathogen. #link# A significant decrease in TERT gene expression in tissue sections of mammary gland free of bacteria and in those infected with coagulase-positive staphylococci was observed in parenchyma samples infected with coagulase-negative staphylococci. Two possible explanations are the direct involvement of the TERT gene in the etiology of bovine mastitis or the increase of TERT mRNA due to activation of the MAPK signaling pathway in response to release of exotoxins by coagulase-negative bacteria in the bovine mammary gland.Increasing dietary calcium has been suggested to have a range of health benefits, such as reducing the risk of osteoporosis and hypertension. However, producing calcium-fortified products is challenging due to the destabilizing effect caused by added calcium. We provide new data on the effect of adding either calcium gluconate or calcium lactate at up to 50 mM on the partition of salts and the structure and solubility of micellar calcium phosphate (MCP). The empirical chemical formula of the MCP in milk with added calcium was Ca(HPO4)0.6(PO4)0.267, similar to that previously reported for the MCP in native bovine casein micelles. Ion equilibria calculations showed that the solubility of the MCP was decreased as measured by an increase in negative logarithm of the solubility constant (pKS) from 6.8 to 7.3 ± 0.1 and 7.5 ± 0.1 for milk with added calcium gluconate and calcium lactate, respectively. link2 No substantial change in the amorphous structure of the MCP was observed by either X-ray powder diffraction or infrared spectroscopy of dried casein micelles as a result of added calcium. The conclusion is that the added calcium caused an increase in the concentration of the MCP and decreased its solubility without changing its amorphous structure or chemical composition.Lameness has a considerable influence on the welfare and health of dairy cows. Many attempts have been made to develop automatic lameness detection systems using computer vision technology. link3 However, these detection methods are easily affected by the characteristics of individual cows, resulting in inaccurate detection of lameness. Therefore, this study explores an individualized lameness detection method for dairy cattle based on the supporting phase using computer vision. This approach is applied to eliminate the influence of the characteristics of individual cows and to detect lame cows and lame hooves. In this paper, the correlation coefficient between lameness and the supporting phase is calculated, a lameness detection algorithm based on the supporting phase is proposed, and the accuracy of the algorithm is verified. Additionally, the reliability of this method using computer vision technology is verified based on deep learning. One hundred naturally walking cows are selected from video data for analysis. The results show that the correlation between lameness and the supporting phase was 0.864; 96% of cows were correctly classified, and 93% of lame hooves were correctly detected using the supporting phase-based lameness detection algorithm. The mean average precision is 87.0%, and the number of frames per second is 83.3 when the Receptive Field Block Net Single Shot Detector deep learning network was used to detect the locations of cow hooves in the video. The results show that the supporting phase-based lameness detection method proposed in this paper can be used for the detection and classification of cow lameness and the detection of lame hooves with high accuracy. This approach eliminates the influence of individual cow characteristics and could be integrated into an automatic detection system and widely applied for the detection of cow lameness.The objective of this study was to evaluate growth and performance of postweaning heifers supplemented with monensin (MON), sodium butyrate (SB), or the combination of MON and SB (MSB) compared with heifers not receiving these feed additives. Forty Holstein heifers [mean age 84.2 ± 1.2 d; body weight (BW) 99.8 ± 10.8 kg (mean ± SD)] were housed in a freestall barn, blocked by birth date, and randomly assigned to 1 of 4 treatments in a randomized complete block design. Treatments were (1) 100 g of soybean meal carrier (control; CON); (2) 0.75 g of SB/kg of BW + carrier (SB); (3) 1 mg of MON/kg of BW + carrier (MON); (4) 1 mg of MON/kg of BW + 0.75 g of SB/kg of BW (MSB). Data were analyzed using single degree of freedom contrasts evaluating CON versus additives (ADD), SB versus MON, and SB and MON versus MSB. AP20187 were hand-mixed daily. Feed and orts were measured daily and frozen at -20°C. Orts samples were subsampled for dry matter (DM) determination, and total mixed ration samples were taken weekly anwk-3 digestibility phase, DMI tended to be greater in heifers fed SB versus MON, as well as in heifers fed MSB versus SB and MON. Digestibility of nutrients were similar, except that starch digestibility was increased in heifers fed MSB versus SB and MON. During the wk-9 digestibility phase, DMI and digestibility of nutrients were similar, except NDF, which tended to be greater in CON than in ADD. Overall, ADD resulted in positive growth and reduced coccidia compared with CON.In this study, high-throughput sequencing (HTS) was used to investigate the microbiota of Robiola di Roccaverano production, an artisanal Protected Designation of Origin soft cheese made with raw goat milk by addition of a natural milk starter (NMS), from the Piedmont region of Italy. Different steps of production of Robiola di Roccaverano cheese at one artisanal dairy were monitored. Matched samples of milk, NMS, curd, and 5-d and 15-d matured cheeses were collected at different periods of the year. The DNA sequences obtained by HTS belonged to 5 phyla Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Tenericutes. In milk, Proteobacteria and Firmicutes were mainly found, and several operational taxonomic units (OTU) belonging to contaminant bacteria such as Pseudomonas, Serratia, and Staphylococcus were observed. However, in NMS, curd, and 5- and 15-d cheeses, Firmicutes were principally observed where OTU of Lactococcus lactis were predominant, followed by Leuconostoc mesenteroides OTU. The results of the analysis showed high bacterial diversity in milk samples compared with NMS, curd, and 5- and 15-d cheeses, suggesting strong action of NMS in driving the characteristics of the final products.Whey proteins are a primary component of milk replacers (MR) and are considered the gold standard for calves. Alternative protein sources may decrease MR cost if calf performance is similar. A blend of bovine plasma protein and modified wheat protein might be a good partial replacement for whey protein. Usually MR is fed twice daily, but feeding 3 times daily might increase efficiency of nutrient use, especially with MR containing alternate proteins. Therefore, our objective was to determine the effects of 2 MR, containing either entirely whey protein (CON) or a combination of whey protein, bovine plasma protein, and modified wheat protein (WBP), when fed in either 2 or 3 meals daily on calf growth and health. Female and male Holstein calves (n = 103) housed in individual hutches were studied for the first 63 d of life, with additional measurements obtained at wk 12 of life in group housing. The MR contained 25% CP, 17% fat, and a LysMet ratio of 3.11. Individual treatments arose from the 2 × 2 factorial arraves fed CON. Calves fed 2× had greater mean and final BW to wk 6 and greater feed efficiency (gainfeed ratio) than calves fed 3×. Blood variables supported the generally similar growth outcomes. Health outcomes did not differ between diets or feeding frequencies. Overall, calves fed WBP had increased starter intake and greater BW gains during wk 7 to 12 than calves fed CON, and calves fed 2× had increased growth and feed efficiency compared with those fed 3×.The aim of this study was to determine the effect of housing system (or manure management system) and season on manure N recovery and volatilization using an N mass balance. Dietary, milk, and manure N were monitored together with outside temperatures in 6 dairy barns. Three barns were designed as conventional freestalls (cubicle, CUB) with an automatic manure scraper system and concrete floor, in which the gutter in the middle was continuously scraped (every 2-4 h) and the slurry was conveyed toward an open-air concrete pool. The other 3 barns were designed as a loose housing system (HS) with a compost-bedded pack (CB) and conventional confinement housing provided with a feed alley that was cleaned mechanically (2-3 times per day). The farms under study were located near Lleida in the center of the Ebro valley, in northeastern Spain. Nitrogen recovery was measured twice under farm-like conditions either during spring-summer (3 mo of increasing temperatures) or fall-winter (3 mo of decreasing temperatures). Ts (42.3 vs. 11.0%). There was no clear association between season and irreversible N losses; however, the housing system was pivotal in the association between N recovery in manure and irreversible losses by volatilization.Mechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chol)-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 ± 5 d postpartum, 34.63 ± 2.73 kg/d of milk production; mean ± SD). The PMN were incubated for 2 h at thermal-neutral (37°C; TN) or heat stress (42°C; HS) temperatures with 3 levels of Chol (0, 400, or 800 μg/mL) or 3 ratios of LysMet (Met; 3.61, 2.91, or 2.41). Supernatant concentrations of IL-1β, IL-6, and tumor necrosis factor-α were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42°C (HS) relative to 37°C (TN).

Autoři článku: Parrottfields0031 (Aaen Ashworth)