Parrottdohn2396
The population genetic diversity and demographic history of the longtail tuna Thunnus tonggol in Malaysian waters was investigated using mitochondrial DNA D-loop and NADH dehydrogenase subunit 5 (ND5). A total of 203 (D-loop) and 208 (ND5) individuals of T. tonggol were sampled from 11 localities around the Malaysian coastal waters. Low genetic differentiation between populations was found, possibly due to the past demographic history, dispersal potential during egg and larval stages, seasonal migration in adults, and lack of geographical barriers. The gene trees, constructed based on the maximum likelihood method, revealed a single panmictic population with unsupported internal clades, indicating an absence of structure among the populations studied. Analysis on population pairwise comparison ФST suggested the absence of limited gene flow among study sites. Taken all together, high haplotype diversity (D-loop = 0.989-1.000; ND5 = 0.848-0.965), coupled with a low level of nucleotide diversity (D-loop = 0.019-0.025; ND5 = 0.0017-0.003), "star-like" haplotype network, and unimodal mismatch distribution, suggests a recent population expansion for populations of T. tonggol in Malaysia. Furthermore, neutrality and goodness of fit tests supported the signature of a relatively recent population expansion during the Pleistocene epoch. To provide additional insight into the phylogeographic pattern of the species within the Indo-Pacific Ocean, we included haplotypes from GenBank and a few samples from Taiwan. Preliminary analyses suggest a more complex genetic demarcation of the species than an explicit Indian Ocean versus Pacific Ocean delineation.Runners on average do not have a high risk of developing knee osteoarthritis, even though running places very high loads on the knee joint. Here we used gait analysis, musculoskeletal modeling, and a discrete-element model of knee contact mechanics to estimate strains of the medial knee cartilage in walking and running in 22 young adults (age 23 ± 3 years). A phenomenological model of cartilage damage, repair, and adaptation in response to these strains then estimated the failure probability of the medial knee cartilage over an adult lifespan (age 23-83 years) for 6 km/day of walking vs. walking and running 3 km/day each. With no running, by age 55 the cumulative probability of medial knee cartilage failure averaged 36% without repair and 13% with repair, similar to reports on incidence of knee osteoarthritis in non-obese adults with no knee injuries, but the probability for running was very high without repair or adaptation (98%) and remained high after including repair (95%). Adaptation of the cartilage compressive modulus, cartilage thickness, and the tibiofemoral bone congruence in response to running (+1.15 standard deviations of their baseline values) was necessary for the failure probability of walking and running 3 km/day each to equal the failure probability of walking 6 km/day. The model results suggest two conclusions for further testing (i) unlike previous findings on the load per unit distance, damage per unit distance on the medial knee cartilage is greater in running vs. walking, refuting the "cumulative load" hypothesis for long-term joint health; (ii) medial knee cartilage is unlikely to withstand a lifetime of mechanical loading from running without a natural adaptation process, supporting the "cartilage conditioning" hypothesis for long-term joint health.Prions are self-propagating alternative states of protein domains. They are linked to both diseases and functional protein roles in eukaryotes. Prion-forming domains in Saccharomyces cerevisiae are typically domains with high intrinsic protein disorder (i.e., that remain unfolded in the cell during at least some part of their functioning), that are converted to self-replicating amyloid forms. S. cerevisiae is a member of the fungal class Saccharomycetes, during the evolution of which a large population of prion-like domains has appeared. It is still unclear what principles might govern the molecular evolution of prion-forming domains, and intrinsically disordered domains generally. Here, it is discovered that in a set of such prion-forming domains some evolve in the fungal class Saccharomycetes in such a way as to absorb general mutation biases across millions of years, whereas others do not, indicating a spectrum of selection pressures on composition and sequence. #link# Thus, if the bias-absorbing prion formers are conserving a prion-forming capability, then this capability is not interfered with by the absorption of bias changes over the duration of evolutionary epochs. Evidence is discovered for selective constraint against the occurrence of lysine residues (which likely disrupt prion formation) in S. cerevisiae prion-forming domains as they evolve across Saccharomycetes. These results provide a case study of the absorption of mutational trends by compositionally biased domains, and suggest methodology for assessing selection pressures on the composition of intrinsically disordered regions.The coefficient of variation is often used to illustrate the variability of precipitation. Moreover, the difference of two independent coefficients of variation can describe the dissimilarity of rainfall from two areas or times. Several researches reported that the rainfall data has a delta-lognormal distribution. To estimate the dynamics of precipitation, confidence interval construction is another method of effectively statistical inference for the rainfall data. In this study, we propose confidence intervals for the difference of two independent coefficients of variation for two delta-lognormal distributions using the concept that include the fiducial generalized confidence interval, the Bayesian methods, and the standard bootstrap. The performance of the proposed methods was gauged in terms of the coverage probabilities and the expected lengths via Monte Carlo simulations. Simulation studies shown that the highest posterior density Bayesian using the Jeffreys' Rule prior outperformed other methods in virtually cases except for the cases of large variance, for which the standard bootstrap was the best. The rainfall series from Songkhla, Thailand are used to illustrate the proposed confidence intervals.
is the causative agent of a debilitating skin and soft tissue infection known as Buruli ulcer (BU). There is no vaccine against BU. The purpose of this study was to investigate the vaccine potential of two previously described immunogenic
proteins, MUL_3720 and Hsp18, using a mouse tail infection model of BU.
Recombinant versions of the two proteins were each electrostatically coupled with a previously described lipopeptide adjuvant. Seven C57BL/6 and seven BALB/c mice were vaccinated and boosted with each of the formulations. link2 Vaccinated mice were then challenged with
via subcutaneous tail inoculation. Vaccine performance was assessed by time-to-ulceration compared to unvaccinated mice.
The MUL_3720 and Hsp18 vaccines induced high titres of antigen-specific antibodies that were predominately subtype IgG
. However, all mice developed ulcers by day-40 post-
challenge. No significant difference was observed in the time-to-onset of ulceration between the experimental vaccine groups and unvaccinated animals.
These data align with previous vaccine experiments using Hsp18 and MUL_3720 that indicated these proteins may not be appropriate vaccine antigens. This work highlights the need to explore alternative vaccine targets and different approaches to understand the role antibodies might play in controlling BU
These data align with previous vaccine experiments using Hsp18 and MUL_3720 that indicated these proteins may not be appropriate vaccine antigens. This work highlights the need to explore alternative vaccine targets and different approaches to understand the role antibodies might play in controlling BU.
Immune cells in the tumor microenvironment are an important prognostic indicator in diffuse large B-cell lymphoma (DLBCL). However, information on the heterogeneity and risk stratification of these cells is limited. We sought to develop a novel immune model to evaluate the prognostic intra-tumoral immune landscape of patients with DLBCL.
The ESTIMATE and CIBERSORT algorithms were used to estimate the numbers of 22 infiltrating immune cells based on the gene expression profiles of 229 patients with DLBCL who were recruited from a public database. The least absolute shrinkage and selection operator (Lasso) penalized regression analyses and nomogram model were used to construct and evaluate the prognostic immunoscore (PIS) model for overall survival prediction. An immune gene prognostic score (IGPS) was generated by Gene Set Enrichment Analysis (GSEA) and Cox regression analysis was and validated in an independent NCBI GEO dataset (GSE10846).
Tucatinib HER2 inhibitor of activated natural killer cells was associ model associated with the PIS model and enhanced the prognostic functionality for the prediction of overall survival in patients with DLBCL.The purpose of a forecast, in making an estimate about the future, is to give people information to act on. In the case of a coupled human system, a change in human behavior caused by the forecast can alter the course of events that were the subject of the forecast. In this context, the forecast is an integral part of the coupled human system, with two-way feedback between forecast output and human behavior. However, forecasting programs generally do not examine how the forecast might affect the system in question. link3 This study examines how such a coupled system works using a model of viral infection-the susceptible-infected-removed (SIR) model-when the model is used in a forecasting context. Human behavior is modified by making the contact rate responsive to other dynamics, including forecasts, of the SIR system. This modification creates two-way feedback between the forecast and the infection dynamics. Results show that a faster rate of response by a population to system dynamics or forecasts leads to a significant decline in peak infections. Responding to a forecast leads to a lower infection peak than responding to current infection levels. Inaccurate forecasts can lead to either higher or lower peak infections depending on whether the forecast under-or over-estimates the peak. The direction of inaccuracy in a forecast determines whether the outcome is better or worse for the population. While work is still needed to constrain model functional forms, forecast feedback can be an important component of epidemic dynamics that should be considered in response planning.Knowledge on the precise identification of fish resources is critical for sustainable fisheries management. This study employs the DNA barcoding approach to generate a molecular taxonomic catalogue of commercially important reef fishes in the waters of Weh Island (Aceh Province), the most northerly inhabited island in the biodiverse Indonesian Archipelago. The waters not only support artisanal fisheries but also a feeder for the industry in the greater island of Aceh. In total, 230 specimens from 72 species belonging to 32 genera and 17 families were DNA barcoded, representing a major segment of the captured reef fish taxa and a quarter of fish species diversity that had previously been recorded. The sequence read lengths were 639 bp revealing 359 conserved sites, 280 variable sites, 269 parsimony informative and 11 singletons. Our molecular findings paralleled the morphological identification with no evidence of cryptic species or new species discovery. This study is a significant contribution to the fisheries statistics of this area, which would facilitate assessment of species catch composition and hence for strategizing management plans.