Pagerao7503
Optical rotation of laser tweezed nanoparticles offers a convenient means for optical to mechanical force transduction and sensing at the nanoscale. Plasmonic nanoparticles are the benchmark system for such studies, but their rapid rotation comes at the price of high photoinduced heating due to Ohmic losses. We show that Mie resonant silicon nanorods with characteristic dimensions of ∼220 × 120 nm2 can be optically trapped and rotated at frequencies up to 2 kHz in water using circularly polarized laser light. The temperature excess due to heating from the trapping laser was estimated by phonon Raman scattering and particle rotation analysis. We find that the silicon nanorods exhibit slightly improved thermal characteristics compared to Au nanorods with similar rotation performance and optical resonance anisotropy. Altogether, the results indicate that silicon nanoparticles have the potential to become the system of choice for a wide range of optomechanical applications at the nanoscale.Measurement of thermogenesis in individual cells is a remarkable challenge due to the complexity of the biochemical environment (such as pH and ionic strength) and to the rapid and yet not well-understood heat transfer mechanisms throughout the cell. Here, we present a unique system for intracellular temperature mapping in a fluorescence microscope (uncertainty of 0.2 K) using rationally designed luminescent Ln3+-bearing polymeric micellar probes (Ln = Sm, Eu) incubated in breast cancer MDA-MB468 cells. click here Two-dimensional (2D) thermal images recorded increasing the temperature of the cells culture medium between 296 and 304 K shows inhomogeneous intracellular temperature progressions up to ∼20 degrees and subcellular gradients of ∼5 degrees between the nucleolus and the rest of the cell, illustrating the thermogenic activity of the different organelles and highlighting the potential of this tool to study intracellular processes.The discovery of ferromagnetic order in monolayer two-dimensional (2D) crystals has opened a new venue in the field of 2D materials. Two-dimensional magnets are not only interesting on their own, but their integration in van der Waals heterostructures allows for the observation of new and exotic effects in the ultrathin limit. The family of chromium trihalides, CrI3, CrBr3, and CrCl3, is so far the most studied among magnetic 2D crystals. In this Mini Review, we provide a perspective of the state of the art of the theoretical understanding of magnetic 2D trihalides, most of which will also be relevant for other 2D magnets, such as vanadium trihalides. We discuss both the well-established facts, such as the origin of the magnetic moment and magnetic anisotropy, and address as well open issues such as the nature of the anisotropic spin couplings and the magnitude of the magnon gap. Recent theoretical predictions on Moiré magnets and magnetic skyrmions are also discussed. Finally, we give some prospects about the future interest of these materials and possible device applications.Ongoing efforts in materials science have resulted in linear block copolymer systems that generate nanostructures via the phase separation of immiscible blocks; however, such systems are limited with regard to their domain miniaturization and lack of orientation control. We overcome these limitations through the bicyclic topological alteration of a block copolymer system. Grazing incidence X-ray scattering analysis of nanoscale polymer films revealed that bicyclic topologies achieve 51.3-72.8% reductions in domain spacing when compared against their linear analogue, which is more effective than the theoretical predictions for conventional cyclic topologies. Moreover, bicyclic topologies achieve unidirectional orientation and a morphological transformation between lamellar and cylindrical domains with high structural integrity. When the near-equivalent volume fraction between the blocks is considered, the formation of hexagonally packed cylindrical domains is particularly noteworthy. Bicyclic topological alteration is therefore a powerful strategy for developing advanced nanostructured materials for microelectronics, displays, and membranes.We investigate the effect of lattice disorder and local correlation effects in finite and periodic silicene structures caused by carbon doping using first-principles calculations. For both finite and periodic silicene structures, the electronic properties of carbon-doped monolayers are dramatically changed by controlling the doping sites in the structures, which is related to the amount of disorder introduced in the lattice and electron-electron correlation effects. By changing the position of the carbon dopants, we found that a Mott-Anderson transition is achieved. Moreover, the band gap is determined by the level of lattice disorder and electronic correlation effects. Finally, these structures are ferromagnetic even under disorder which has potential applications in Si-based nanoelectronics, such as field-effect transistors (FETs).Super-resolution microscopy is transforming research in the life sciences by enabling the visualization of structures and interactions on the nanoscale. DNA-PAINT is a relatively easy-to-implement single-molecule-based technique, which uses the programmable and transient interaction of dye-labeled oligonucleotides with their complements for super-resolution imaging. However, similar to many imaging approaches, it is still hampered by the subpar performance of labeling probes in terms of their large size and limited labeling efficiency. To overcome this, we here translate the programmability and transient binding nature of DNA-PAINT to coiled coil interactions of short peptides and introduce Peptide-PAINT. We benchmark and optimize its binding kinetics in a single-molecule assay and demonstrate its super-resolution capability using self-assembled DNA origami structures. Peptide-PAINT outperforms classical DNA-PAINT in terms of imaging speed and efficiency. Finally, we prove the suitability of Peptide-PAINT for cellular super-resolution imaging by visualizing the microtubule and vimentin network in fixed cells.