Pagehoffmann7886

Z Iurium Wiki

ConspectusThis Account presents recent advances in our understanding on the formation pathways of complex organic molecules (COMs) within interstellar analog ices on ice-coated interstellar nanoparticles upon interaction with ionizing radiation exploiting reflectron time-of-flight mass spectrometry (ReTOF-MS) coupled with tunable vacuum ultraviolet (VUV) single photon ionization (PI) and resonance enhanced multiphoton ionization (REMPI) of the subliming molecules during the temperature-programmed desorption (TPD) phase. Laboratory simulation experiments provided compelling evidence that key classes of complex organics (aromatic hydrocarbons, alcohols, ethers, aldehydes, enols, ketones, and carboxylic acids) can be synthesized upon exposure of astrophysically relevant model ices to ionizing radiation within and throughout the ices at temperatures as low as 5 K.Molecular mass growth processes can be initiated by suprathermal or electronically excited reactants along with barrierless radical-radical recombinatioorganics in interstellar ices and are fully able to replicate the astronomical observations of complex organics over typical lifetimes of molecular clouds of a few 106 to 107 years. Overall, PI-ReTOF-MS revealed that the processing of astrophysically relevant ices can lead to multifaceted mixtures of organics reaching molecular weights of up to 200 amu. Further advances in laboratory techniques beyond the FTIR-QMS limit are clearly desired not only to confidently assign detection in laboratory ice analog experiments of increasingly more complex molecules of interest but also from the viewpoint of future astronomical searches in the age of the Atacama Large Millimeter/submillimeter Array (ALMA).New opportunities in the development and commercialization of novel photonic and electronic devices can be opened following the development of technology-compatible arbitrary-shaped ferroelectrics encapsulated in a passive environment. Here, we report and experimentally demonstrate nanoscale tailoring of ferroelectricity by an arbitrary pattern within the nonferroelectric thin film. For inducing the ferroelectric nanoregions in the nonferroelectric surrounding, we developed a technology-compatible approach of local doping of a thin (10 nm) HfO2 film by Ga ions right in the thin-film capacitor device via focused ion beam implantation. Local crystallization of the doped regions to the ferroelectric structural phase occurs during subsequent annealing. The remnant polarization of the HfO2Ga regions reached 13 μC/cm2 at a Ga concentration of 0.6 at. %. Piezoresponse force microscopy over the capacitor device revealed an asymmetrical switching of ferroelectric domains within written HfO2Ga patterns after capacitor switching, which was attributed to the mechanical stress across the doped film. The lateral spatial resolution of ferroelectricity tailoring is found to be ∼200 nm, which enables diverse applications in switchable photonics and microelectronic memories.Recently, Nocera and co-workers (J. Am. Chem. Soc.2018, 140, 13711) demonstrated that triaryl borate Lewis acids facilitate the direct electrochemical reduction of triphenylphosphine oxide (TPPO) to triphenylphosphine (TPP). In the present contribution, we report a quantum chemical study unravelling details of the reaction, which also supports the proposed EC r EC i mechanism. Alternative electrochemical routes to TPPO reduction facilitated by other Lewis acids (CH3+), or by photocatalysis at semiconductor surfaces, are also briefly discussed.The structure of MX3 transition metal trichalcogenides (TMTs, with M a transition metal and X a chalcogen) is typified by one-dimensional (1D) chains weakly bound together via van der Waals interactions. This structural motif is common across a range of M and X atoms (e.g., NbSe3, HfTe3,TaS3), but not all M and X combinations are stable. We report here that three new members of the MX3 family which are not stable in bulk, specifically NbTe3, VTe3, and TiTe3, can be synthesized in the few- (2-4) to single-chain limit via nanoconfined growth within the stabilizing cavity of multiwalled carbon nanotubes. Transmission electron microscopy (TEM) and atomic-resolution scanning transmission electron microscopy (STEM) reveal the chain-like nature and the detailed atomic structure. The synthesized materials exhibit behavior unique to few-chain quasi-1D structures, such as few-chain spiraling and a trigonal antiprismatic rocking distortion in the single-chain limit. https://www.selleckchem.com/products/me-401.html Density functional theory (DFT) calculations provide insight into the crystal structure and stability of the materials, as well as their electronic structure.Puckered honeycomb Sb monolayer, the structural analog of black phosphorene, has been recently successfully grown by means of molecular beam epitaxy. However, little is known to date about the growth mechanism for such a puckered honeycomb monolayer. In this study, by using scanning tunneling microscopy in combination with first-principles density functional theory calculations, we unveil that the puckered honeycomb Sb monolayer takes a kinetics-limited two-step growth mode. As the coverage of Sb increases, the Sb atoms first form the distorted hexagonal lattice as the half layer, and then the distorted hexagonal half-layer transforms into the puckered honeycomb lattice as the full layer. These results provide the atomic-scale insight in understanding the growth mechanism of puckered honeycomb monolayer and can be instructive to the direct growth of other monolayers with the same structure.A one-pot strategy was applied to synchronize enzymatic monomer transformation with reversible addition fragmentation chain transfer (RAFT) polymerization for the synthesis of glycopolymers with highly branched gradient architectures. Also, the linear analogues, block glycopolymers, and gradient glycopolymers were also synthesized for comparison. The binding ability of glycopolymers toward bacteria was then studied by optical density (OD) test, confocal laser scanning microscopy (CLSM), and quartz crystal microbalance with dissipation (QCM-D). The results show that the highly branched gradient glycopolymers have the most remarkable bacteria-binding ability compared with the two linear analogues, gradient glycopolymers, and block glycopolymers. The highly branched glycopolymers were further used as inhibitors in the anti-infection test, demonstrating a significant inhibitory effect on preventing bacteria from infecting the cells.Hexagonal boron nitride (h-BN) has emerged as a promising 2D/layered dielectric owing to its successful integration with graphene and other 2D materials, although a coherent picture of the overall dielectric breakdown mechanism in h-BN is yet to emerge. Here, we have carried out a systematic study using conduction atomic force microscopy to provide insights into the process of defect generation and dielectric degradation in the progressive breakdown (PBD) and hard breakdown (HBD) stages in 2-5 nm thick chemical vapor deposition (CVD)-grown multilayer h-BN films. The PBD and HBD regimes show different behaviors. Under electrical stress in the PBD stage, defects are generated progressively in the h-BN, leading to a gradual reduction of the effective barrier resistance and continuous soft breakdowns (SBDs) of the dielectric material. Random telegraph noise nano-spectroscopy shows that low frequency noise becomes dominant after an SBD event due to the creation of additional defects around the percolation path. We also observe a wide variation in the current-voltage (I-V) breakdown plots in the PBD stage, giving rise to non-Weibull statistical distribution of the breakdown voltage. We attribute this observation to the significant thickness inhomogeneity in the CVD films. At HBD, h-BN materials are always physically removed from the film, leading to the formation of pits at the breakdown location. Interestingly, pit formation is also occasionally observed in the PBD stage under very low current compliances, suggesting that breakdown may proceed by a mixture of defect generation and material removal in h-BN CVD films.The use of nontherapeutic broad-spectrum antimicrobial agents triclosan (TCS) and benzalkonium chloride (BC) can contribute to bacterial resistance to clinically relevant antibiotics. Antimicrobial-resistant bacteria within wastewater may reflect the resistance burden within the human microbiome, as antibiotics and pathogens in wastewater can track with clinically relevant parameters during perturbations to the community. In this study, we monitored culturable and resistant wastewater bacteria and cross-resistance to clinically relevant antibiotics to gauge the impact of each antimicrobial and identify factors influencing cross-resistance profiles. Bacteria resistant to TCS and BC were isolated from wastewater influent over 21 months, and cross-resistance, taxonomy, and monthly changes were characterized under both antimicrobial selection regimes. Cross-resistance profiles from each antimicrobial differed within and between taxa. BC-isolated bacteria had a significantly higher prevalence of resistance to "last-resort antibiotic" colistin, while isolates resistant to TCS exhibited higher rates of multidrug resistance. Prevalence of culturable TCS-resistant bacteria decreased over time following Food and Drug Administration (FDA) TCS bans. Cross-resistance patterns varied according to sampling date, including among the most clinically important antibiotics. Correlations between strain-specific resistance profiles were largely influenced by taxonomy, with some variations associated with sampling date. The results reveal that time, taxonomy, and selection by TCS and BC impact features of cross-resistance patterns among diverse wastewater microorganisms, which could reflect the variety of factors influencing resistance patterns relevant to a community microbiome.Molecular isomerization is a fundamental issue in the development of functional materials, with a crucial impact on photophysical properties. However, up to now, their effect on photothermal conversion is rarely investigated. Here, two near-infrared (NIR)-absorbing regioisomer conjugated polymers integrated with cis/trans-terselenophenes are designed and synthesized as efficient photothermal agents to enhance cancer phototheranostics. It is demonstrated that enhanced quinoidal resonance of trans-terselenophenes allows the resulting trans-CP to possess more planar backbone to further increase the effective conjugation length and result in the strong absorption spectra at 808 nm. Characterization of photophysical properties has proved that the photothermal conversion efficiency of trans-CP nanoparticles is up to 61.4%, and they are 210% as strong as cis-CP nanoparticles (29.4%). Further in vitro and in vivo works demonstrate efficient photothermal therapeutic effects with the guidance of photoacoustic imaging. This work affords a new understanding of the molecular isomerization into the development of conjugated materials for high-performance cancer phototheranostics.Perfluorooctane sulfonate (PFOS) is a metabolic-disrupting chemical. There is a strong association between maternal and cord blood PFOS concentrations, affecting metabolism in early life. However, the underlying effects have not been fully elucidated. In this study, using the maternal-fetal model, we investigated the impact of gestational PFOS exposure on the placental structure and nutrient transport. Pregnant mice were oral gavaged with PFOS (1 or 3 μg PFOS/g body weight) from gestational day (GD) 4.5 until GD 17.5. Our data showed a significant reduction in fetal body weight at high dose exposure. There were no noticeable changes in placental weights and the relative areas of junctional and labyrinth zones among the control and exposed groups. However, a placental nutrient transport assay showed a significant reduction in maternal-fetal transport of the glucose and amino acid analogues. Western blot analysis showed a significant decrease in the expression levels of placental SNAT4 upon PFOS exposure. Moreover, in the high-dose exposed group, placenta and fetal livers were found to have significantly higher corticosterone levels, a negative regulator of fetal growth.

Autoři článku: Pagehoffmann7886 (Sahin Alexandersen)