Padgettboykin2596

Z Iurium Wiki

Compared to the 0K-0P treatment, taproots of plants fertilized with 400K-75P had higher starch, protein, amino-N, and RNA, but reduced sugar concentrations in fall. Concentrations of all these pools, except starch, declined during the initial 2 weeks of sampling beginning in late March as shoot growth resumed in spring. Herbage yield in May was highest for the 400K-75P treatment and least for the 0K-0P treatment, differences that were associated with variation in mass shoot-1 and not shoots m-2. High yield of the 400K-75P plants in May was consistently associated with greater concentrations and use of amino-N, soluble protein, and RNA pools in taproots, and not with accumulation and use of starch and sugar pools. Understanding factors leading to the accumulation of taproot N reserves and RNA during cold acclimation in fall and their use during the initial growth in spring should enhance efforts to improve alfalfa growth and herbage yield in spring.Cork spot is one of the most damaging physiological disorders in pear fruit, causing considerable economic loss every year. However, the mechanism of cork spot occurrence requires further examination. In this study, X-ray CT scanning was applied to analyze the microstructure of pear fruit "Akizuki" (Pyrus pyrifolia), a cultivar susceptible to cork spot disorder, to elucidate the fruit texture alteration between healthy and cork spotted fruit. Results showed that cork spotted fruit had much higher porosity (9.37%) than healthy fruit (3.52%). Reconstructed three-dimensional (3D) network skeleton models showed highly branched pore channels in cork spotted fruit and a low degree of pore connectivity in healthy fruit. Even in areas of disordered fruit without cork spot, the pore throat diameter, pore length, and coordinated core number (i.e., 77, 160, and 16, respectively) were much higher than that of healthy fruit. The structure analysis of fruit core showed that core deformation only occurred in cork spotted fruit. A much more highly branched network was observed in cork spotted fruit cores compared with healthy fruit cores. Epacadostat High-resolution observation of flesh tissue directly demonstrated that pore size in cork spotted fruit (87 μm) was four times larger than that of healthy fruit (22 μm). Altered expression of genes related to Ca2+ transport and the uneven distribution of intracellular Ca2+ were also shown to associate with the development of cork spot disorder. Our results suggest that flesh tissue damage likely occurred prior to the initiation of cork spot. The dysfunction of long-distance and transmembrane Ca2+ transport channels could be responsible for the imbalanced distribution of Ca2+ inside the fruit, thus resulting in the development of cork spot.Plant-associated beneficial strains inhabiting plants grown under harsh ecosystems can help them cope with abiotic stress factors by positively influencing plant physiology, development, and environmental adaptation. Previously, we isolated a potential plant growth promoting strain (AXSa06) identified as Pseudomonas oryzihabitans, possessing 1-aminocyclopropane-1-carboxylate deaminase activity, producing indole-3-acetic acid and siderophores, as well as solubilizing inorganic phosphorus. In this study, we aimed to further evaluate the effects of AXSa06 seed inoculation on the growth of tomato seedlings under excess salt (200 mM NaCl) by deciphering their transcriptomic and metabolomic profiles. Differences in transcript levels and metabolites following AXSa06 inoculation seem likely to have contributed to the observed difference in salt adaptation of inoculated plants. In particular, inoculations exerted a positive effect on plant growth and photosynthetic parameters, imposing plants to a primed state, at which they were able to respond more robustly to salt stress probably by efficiently activating antioxidant metabolism, by dampening stress signals, by detoxifying Na+, as well as by effectively assimilating carbon and nitrogen. The primed state of AXSa06-inoculated plants is supported by the increased leaf lipid peroxidation, ascorbate content, as well as the enhanced activities of antioxidant enzymes, prior to stress treatment. The identified signatory molecules of AXSa06-mediated salt tolerance included the amino acids aspartate, threonine, serine, and glutamate, as well as key genes related to ethylene or abscisic acid homeostasis and perception, and ion antiporters. Our findings represent a promising sustainable solution to improve agricultural production under the forthcoming climate change conditions.As an important component, 1,000 kernel weight (TKW) plays a significant role in the formation of yield traits of wheat. Kernel size is significantly positively correlated to TKW. Although numerous loci for kernel size in wheat have been reported, our knowledge on loci for kernel area (KA) and kernel circumference (KC) remains limited. In the present study, a recombinant inbred lines (RIL) population containing 371 lines genotyped using the Wheat55K SNP array was used to map quantitative trait loci (QTLs) controlling the KA and KC in multiple environments. A total of 54 and 44 QTLs were mapped by using the biparental population or multienvironment trial module of the inclusive composite interval mapping method, respectively. Twenty-two QTLs were considered major QTLs. BLAST analysis showed that major and stable QTLs QKc.sau-6A.1 (23.12-31.64 cM on 6A) for KC and QKa.sau-6A.2 (66.00-66.57 cM on 6A) for KA were likely novel QTLs, which explained 22.25 and 20.34% of the phenotypic variation on average in the 3 year experiments, respectively. Two Kompetitive allele-specific PCR (KASP) markers, KASP-AX-109894590 and KASP-AX-109380327, were developed and tightly linked to QKc.sau-6A.1 and QKa.sau-6A.2, respectively, and the genetic effects of the different genotypes in the RIL population were successfully confirmed. Furthermore, in the interval where QKa.sau-6A.2 was located on Chinese Spring and T. Turgidum ssp. dicoccoides reference genomes, only 11 genes were found. In addition, digenic epistatic QTLs also showed a significant influence on KC and KA. Altogether, the results revealed the genetic basis of KA and KC and will be useful for the marker-assisted selection of lines with different kernel sizes, laying the foundation for the fine mapping and cloning of the gene(s) underlying the stable QTLs detected in this study.Deficit irrigation (DI) is an irrigation scheduling technique that is used in grapes to improve red color development; however, results are not always satisfactory in table grapes. The red color in grapes is mainly due to the plant pigment anthocyanin. In the present study, the anthocyanin biosynthesis in Scarlet Royal grapes (Vitis vinifera L.) grown in the San Joaquin and Coachella Valleys, and subjected to two different DI strategies was investigated. The objective of this study was to identify potential regulatory factors that may lead to potential treatments to improve red color in table grapes, especially under warm climate conditions. In both locations, DI induced the expression of several genes involved in three major pathways that control the red color in table grapes anthocyanin biosynthesis, hormone biosynthesis, and antioxidant system. DI at veraison induced anthocyanin accumulation and enhanced red color in berries at harvest time. However, anthocyanin accumulation was lower at the Coachella Vallme activities in the Coachella Valley compared to the San Joaquin Valley. The present data suggested that the lack of grape red coloration could partially be due to the lower level of antioxidant activities resulting in accelerated anthocyanin degradation and impaired anthocyanin biosynthesis. It seems that under challenging warmer conditions, several factors are required to optimize anthocyanin accumulation via DI, including an active antioxidant system, proper light perception, and hormonal balance.Cultivated plants belonging to the genus Prunus are globally widespread and for some countries, are economically important crops; and they play a key role in the composition of a landscape. Xylella fastidiosa is a key threat to plant health, and several Prunus species are heavily stressed by this pathogen, such as almond, peach, and plum; many strain types of different subspecies can cause severe diseases. This review highlights different approaches to managing epidemic events related to X. fastidiosa in stone fruit plants. In fact, in most new European and Asian outbreaks, almond is the main and very common host and peach, plum, apricot, and cherry are widespread and profitable crops for the involved areas. Various diseases associated with stone fruit plants show different degrees of severity in relation to cultivar, although investigations are still limited. The development and selection of tolerant and resistant cultivars and the study of resistance mechanisms activated by the plant against X. fastidiosa infections seem to be the best way to find long-term solutions aimed at making affected areas recover. In addition, observations in orchards severely affected by the disease can be essential for collecting tolerant or resistant materials within the local germplasm. In areas where the bacterium is not yet present, a qualitative-quantitative study on entomofauna is also important for the timely identification of potential vectors and for developing effective control strategies.A well-developed root system benefits host plants by optimizing water absorption and nutrient uptake and thereby increases plant productivity. In this study we have characterized the root transcriptome using RNA-seq and subsequential functional analysis in a set of drought tolerant and susceptible genotypes. The goal of the study was to elucidate and characterize water deficit-responsive genes in wheat landraces that had been through long-term field and biochemical screening for drought tolerance. The results confirm genotype differences in water-deficit tolerance in line with earlier results from field trials. The transcriptomics survey highlighted a total of 14,187 differentially expressed genes (DEGs) that responded to water deficit. The characterization of these genes shows that all chromosomes contribute to water-deficit tolerance, but to different degrees, and the B genome showed higher involvement than the A and D genomes. The DEGs were mainly mapped to flavonoid, phenylpropanoid, and diterpenoid biosynthesis pathways, as well as glutathione metabolism and hormone signaling. Furthermore, extracellular region, apoplast, cell periphery, and external encapsulating structure were the main water deficit-responsive cellular components in roots. A total of 1,377 DEGs were also predicted to function as transcription factors (TFs) from different families regulating downstream cascades. TFs from the AP2/ERF-ERF, MYB-related, B3, WRKY, Tify, and NAC families were the main genotype-specific regulatory factors. To further characterize the dynamic biosynthetic pathways, protein-protein interaction (PPI) networks were constructed using significant KEGG proteins and putative TFs. In PPIs, enzymes from the CYP450, TaABA8OH2, PAL, and GST families play important roles in water-deficit tolerance in connection with MYB13-1, MADS-box, and NAC transcription factors.

Autoři článku: Padgettboykin2596 (MacGregor Mooney)