Ovesenlynn6552

Z Iurium Wiki

The application of potassium bicarbonate to drought stressed plants significantly increased the chlorophyll content, fresh and dry weight, phenolics content in the two of tested cultivars, and antioxidant activity, determined by DPPH and ABTS methods. Principal component analysis showed that the first factor was highly and positively related to all the investigated parameters. Hierarchical clustering analysis showed that the first cluster was formed by being well-watered, well-watered and sprayed with potassium bicarbonate, and grown under drought conditions and sprayed with potassium bicarbonate basil cultivars, while the second cluster was formed by all the tested cultivars grown under drought conditions.Methylnissolin-3-O-β-d-glucopyranoside (MNG) is a pterocarpan analog, which protects EA.hy926 cells against oxidative damage through the Nrf2/HO-1 pathway. However, the effects of MNG on obesity-induced inflammatory responses in adipocyte-macrophage co-culture remain unclear. A differentiated murine preadipocyte cell line (3T3-L1) was co-cultured with a murine macrophage cell line (RAW264.7). Intracellular lipid accumulation was determined using Oil Red O staining. Western blotting was performed to investigate the expression of adipogenesis- and inflammation-associated proteins. Cell culture supernatants were assayed using ELISA kits to measure the levels of proinflammatory cytokines such as interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). MNG inhibited lipid accumulation and the production of IL-6 and MCP-1 in the 3T3-L1 and RAW264.7 cell co-culture. Moreover, MNG inhibited the protein expression of CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, peroxisome proliferator-activated receptor γ (PPARγ), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS) under the same co-culture conditions. MNG also inhibited IL-6 and MCP-1 production compared with the co-culture control. These findings demonstrate that MNG inhibited lipid accumulation and inflammatory response by downregulating IL-6 and MCP-1 production and protein expression of C/EBPβ, C/EBPα, PPARγ, COX-2, and iNOS in co-culture conditions with 3T3-L1 and RAW264.7 cells. These results suggest that MNG may be beneficial in preventing obesity-related inflammatory status.Root biomass is one of the most relevant root parameters for studies of plant response to environmental change. In this work, a dynamic and adjustable electrode array sensor system is designed for developing a cost-effective, high-speed data acquisition system based on electrical impedance tomography (EIT). The developed EIT system is found to be suitable for in situ measurements and capable of monitoring the changes in root growth and development with three-dimensional imaging by measuring impedances in multiple frequencies with the help of an EIT sensor. The designed EIT sensor system is assessed and calibrated by the inhomogeneities in both water and soil media. The impedances are measured for multiple tap roots using an electrical impedance spectroscopy (EIS) tool connected to the sensor at frequencies ranging from 1 kHz to 100 kHz. The changes in conductivity are calculated by obtaining the boundary voltages from the measured impedances for a given stimulation current. A non-invasive imaging method is utuction software (EIDORS).Viktor Janka von Bulcs described five names in Iris, i.e., I. balkana, I. cretensis, I. lorea, I. mellita, and I. sintenisii. These names are typified on specimens deposited at BP, JE, LD, and P, and taxonomical information is provided in the present report. Lectotypes are designated for I. mellita (a taxonomic synonym of I. suaveolens) deposited at Friedrich Schiller University Jena (JE), for I. sintenisii at Lund University (LD), and for I. lorea (a taxonomic synonym of I. sintenisii) at the French National Museum of Natural History (P). A neotype is designated and an image provided for the name I. balkana (a taxonomic synonym of I. reichenbachii) deposited at the Hungarian Natural History Museum (BP). The lectotype for I. cretensis (a taxonomic synonym of I. unguicularis) from JE is corrected. Images of plants of the accepted taxa are provided.The conventional plant breeding evaluation of large sets of plant phenotypes with precision and speed is very challenging. Thus, consistent, automated, multifaceted, and high-throughput phenotyping (HTP) technologies are becoming increasingly significant as tools to aid conventional breeding programs to develop genetically improved crops. With rapid technological advancement, various vegetation indices (VIs) have been developed. These VI-based imaging approaches, linked with artificial intelligence and a variety of remote sensing applications, provide high-throughput evaluations, particularly in the field of precision agriculture. VIs can be used to analyze and predict different quantitative and qualitative aspects of vegetation. Here, we provide an overview of the various VIs used in agricultural research, focusing on those that are often employed for crop or vegetation evaluation, because that has a linear relationship to crop output, which is frequently utilized in crop chlorophyll, health, moisture, and production predictions. In addition, the following aspects are here described the importance of VIs in crop research and precision agriculture, their utilization in HTP, recent photogrammetry technology, mapping, and geographic information system software integrated with unmanned aerial vehicles and its key features. Finally, we discuss the challenges and future perspectives of HTP technologies and propose approaches for the development of new tools to assess plants' agronomic traits and data-driven HTP resolutions for precision breeding.Independent evolutionary lineages or species that lack phenotypic variation as an operative criterion for their delimitation are known as cryptic species. However, these have been delimited using other data sources and analysis. The aims of this study are (1) to evaluate the divergence of the populations of the T. ionantha complex; and (2) to delimit the species using multilocus data, phylogenetic analysis and the coalescent model. Phylogenetic analyses, genetic diversity and population structure, and isolation by distance analysis were performed. A multispecies coalescent analysis to delimit the species was conducted. Phylogenetic analysis showed that T. ionantha is polyphyletic composed of eight evolutionary lineages. Haplotype distribution and genetic differentiation analysis detected strong population structure and high values of genetic differentiation among populations. The positive correlation between genetic differences with geographic distance indicate that the populations are evolving under the model of isolation by distance. The coalescent multispecies analysis performed with starBEAST supports the recognition of eight lineages as different species. Only three out of the eight species have morphological characters good enough to recognize them as different species, while five of them are cryptic species. Tillandsia scaposa and T. vanhyningii are corroborated as independent lineages, and T. ionantha var. stricta changed status to the species level.Avocado bronze mite (ABM), Oligonychus punicae Hirst (Trombidiformes Tetranychidae) has potential for development in several plant species of agricultural importance. ABM is one of the most economically important pests in avocado cultivars, causing major damage to fruit and defoliation. At present, the control of ABM depends mainly on agrochemicals. Therefore, it is necessary to find alternatives to agrochemicals that can help minimize environmental impact and health risks for humans and mammals. The aim of this research was to assess the effect of different concentrations (5, 10, 50, 100, 250, 500, 1000 µg/mL) of ethanolic powdered extract of M. tamaulipana leaves against adult ABM females. The different concentrations of M. tamaulipana extract did not cause mortality of O. CC-115 clinical trial punicae. Females treated with 5 and 1000 µg/mL of the extract showed a decrease in the number of eggs laid per female at 24 (5.17 and 1.27), 48 (5.07 and 1.17), and 72 h (4.97 and 0.80), compared to the control treatment (5.20, 6.60 and 6.87), respectively, which led to a reduction in the growth rate. Percentage of feeding damage decreased with the increasing concentration of the extract. The ethanolic powdered extract of M. tamaulipana leaf has potential to control O. punicae.Light and nutrients are among the most important factors for sustained plant production in agriculture. As one of the goals of the European Green Deal strategy is to reduce energy consumption, greenhouse growers focus on high-value crop cultivation with less-energy-demanding growing systems. This study aimed to evaluate the effect of fertilization at different light intensities on the growth of lettuce and basil and the activity of the antioxidant system. Sweet basil (Ocimum basilicum, 'Opal') and lettuce (Lactuca sativa, 'Nikolaj') were grown in a greenhouse supplementing natural light (~80 µmol m-2 s-1) with lighting at two photon flux densities (150 and 250 µmol m-2 s-1), 16 h photoperiod, and 20/16 °C day/night temperature in May (Lithuania, 55°60' N, 23°48' E). In each light regime treatment, half of the plants were grown without additional fertilization; the other half were fertilized twice a week with a complex fertilizer (NPK 3-1-3). The results showed that the antioxidant activity of basil was most affected by 150 µmol m-2 s-1 PPFD lighting and the absence of fertilization. Altered antioxidant activity in lettuce in the presence of 250 µmol m-2 s-1 PPFD additional light intensity and fertilization resulted in higher morphological parameters.This 2-year field study analyzed plastic film mulching (PFM) effects on nitrogen use efficiency (NUE), and soil N pools under rainfed dryland conditions. Compared to no-mulching (NM, control), maize yields under PFM were increased by 36.3% (2515.7 kg ha-1) and 23.9% (1656.1 kg ha-1) in the 2020 and 2021 growing seasons, respectively. The PFM improved (p < 0.01) the water use efficiency (WUE) of maize by 39.6% and 33.8% in the 2020 and 2021 growing seasons, respectively. The 2-year average NUE of maize under the PFM was 40.1, which was 30.1% greater than the NM. The average soil total N, particulate organic N, and microbial biomass N contents under the PFM soil profile were increased by 22.3%, 51.9%, and 35%, respectively, over the two growing seasons. The residual 15N content (%TN) in soil total N pool was significantly higher (p < 0.05) under the PFM treatment. Our results suggest that PFM could increase maize productivity and sustainability of rainfed dryland faming systems by improving WUE, NUE, and soil N pools.The transmission of seed-borne pathogens by the germinating seed is responsible for major crop diseases. The immune responses of the seed facing biotic invaders are poorly documented so far. The Arabidopsis thaliana/Alternaria brassicicola patho-system was used to describe at the transcription level the responses of germinating seeds and young seedling stages to infection by the necrotrophic fungus. RNA-seq analyses of healthy versus inoculated seeds at 3 days after sowing (DAS), stage of radicle emergence, and at 6 and 10 DAS, two stages of seedling establishment, identified thousands of differentially expressed genes by Alternaria infection. Response to hypoxia, ethylene and indole pathways were found to be induced by Alternaria in the germinating seeds. However, surprisingly, the defense responses, namely the salicylic acid (SA) pathway, the response to reactive oxygen species (ROS), the endoplasmic reticulum-associated protein degradation (ERAD) and programmed cell death, were found to be strongly induced only during the latter post-germination stages.

Autoři článku: Ovesenlynn6552 (Rosales Butler)