Overgaardknight0318

Z Iurium Wiki

Vaginal administration is a promising route for the local treatment of infectious vaginal diseases since it can bypass the first-pass metabolism, drug interactions, and adverse effects. However, the commercial products currently available for topical vulvovaginal treatment have low acceptability and do not adequately explore this route. Mucoadhesive systems can optimize the efficacy of drugs administered by this route to increase the retention time of the drug in the vaginal environment. Several polymers are used to develop mucoadhesive systems, among them chitosan, a natural polymer that is highly biocompatible and technologically versatile. Thus, the present review aimed to analyze the studies that used chitosan to develop mucoadhesive systems for the treatment of local vaginal infections. These studies demonstrated that chitosan as a component of mucoadhesive drug delivery systems (DDS) is a promising device for the treatment of vaginal infectious diseases, due to the intrinsic antimicrobial activity of this biopolymer and because it does not interfere with the effectiveness of the drugs used for the treatment.Polysaccharidic scaffolds hold great hope in regenerative medicine, however their sterilization still remains challenging since conventional methods are deleterious. Recently, electron beams (EB) have raised interest as emerging sterilization techniques. In this context, the aim of this work was to study the impact of EB irradiations on polysaccharidic macroporous scaffolds. The effects of continuous and pulsed low energy EB were examined on polysaccharidic or on polyelectrolyte complexes (PEC) scaffolds by SEC-MALLS, FTIR and EPR. Then the scaffolds' physicochemical properties swelling, architecture and compressive modulus were investigated. Finally, sterility and in vitro biocompatibility of irradiated scaffolds were evaluated to validate the effectiveness of our approach. Continuous beam irradiations appear less deleterious on alginate and chitosan chains, but the use of a pulsed beam limits the time of irradiation and better preserve the architecture of PEC scaffolds. This work paves the way for low energy EB tailor-made sterilization of sensitive porous scaffolds.Glycerol is a clinical biomarker of lipolysis that is mainly produced by adipose tissues. Blood glycerol content increases in pathological conditions such as metabolic and cardiovascular diseases or cancer cachexia, but also in response to energetic stress such as physical exercise. Accurate glycerol monitoring is therefore important in a range of healthcare contexts. However, current methods available for the quantification of glycerol are expensive, time-consuming, and require the extraction of plasma from blood, from which blood glycerol content is then extrapolated. Here, we report the development of a new point-of-care glycerometer device, DietSee, based on a strip-type biosensor that enables the quantification of glycerol directly from whole blood in 6 s. The performance of the biosensor was first evaluated using buffer solutions and spiked human and mouse plasma samples, and its response was compared with that of the gold-standard colorimetric method. The results obtained using DietSee correlated stronp blood drop.Series of aqueous droplets containing redox species were generated on-demand in a microfluidic channel and detected downstream by an electrochemical cell. Depending on the cell geometry, amperometric detections were performed to simultaneously determine the velocity, volume and content of circulating droplets in oil. Volumes and velocities were estimated from specific transition times on the chronoamperometric responses, while charge were evaluated from current integration. The results showed that the total charge within droplets was controlled by the geometry of the electrochemical cell and droplet velocity, leading to accurate determinations of droplet content under specific operating conditions. An active merging of droplets with titrating solutions was tested for analytical purposes. The results demonstrated that even if the mixing was not complete during detection, the assessment of droplet content was still valid. The performance of electrochemical detection was thus evidenced to determine the content of heterogeneous droplets. This property is pertinent since the design of sophisticated circuits is no longer required to fully homogenize the droplet content before characterization, opening broader perspectives in droplet-based microfluidics.Rapid and sensitive detection of Hg2+ in the environment and drinking water is vital because of its non-degradability, bioaccumulation, and high toxicity. Herein, we report a portable evanescent wave optofluidic biosensor (EWOB) for simple sensitive detection of Hg2+ using fluorescence labeled poly-A DNA strand (CY-A14) and quencher labeled poly-T DNA strand (BQ-T14) as signal reporter and biorecognition element, respectively. Both CY-A14 and Hg2+ can competitively bind with BQ-T14 based on DNA hybridization and the specifical binding of Hg2+ and T bases of DNA to form T-Hg2+-T mismatch structure, respectively. Higher concentration of Hg2+ lead to less CY-A14 bound to BQ-T14 and thus a higher fluorescence intensity. The influence of several key environmental factors on Hg2+ biosensor, such as pH, temperature, and ionic strength, was investigated in details because they were essential for practical applications of Hg2+ biosensor. Under optimal conditions, a detection cycle for a single sample, including the measurement and regeneration, was less than 10 min with a Hg2+ detection limit of 8.5 nM. The high selectivity of the biosensor was showed by evaluating its response to various potentially interfering metal ions. Our results clearly demonstrated that the portable EWOB could serve as a powerful tool for rapid and sensitive on-site detection of Hg2+ in real water samples. The EWOB is also potentially applicable to detect other heavy metal ions or small molecule targets for which DNA/aptamers could be applied as specific biosensing probes.Development of biosimilars is costly, where glycan analysis is a significant constraint on time and money. This paper provides an in-depth characterisation of several novel recombinant prokaryotic lectins (RPLs), developed through directed evolution, displaying specific binding activities to α-mannose, β-galactose, fucose and sialic acid residues, tested against major biosimilar targets. selleck kinase inhibitor The binding characterisation of all lectins was performed employing the principles of bio-layer interferometry (BLI), with help of the streptavidin-coated sensor with the biotinylated lectins. The binding activity of the RPLs and the specificity to a broad range of glycoproteins and glycoconjugates were evaluated and compared to those of equivalent plant-derived lectins. While exhibiting better or similar specificity, RPLs displayed significantly better binding in all cases. The binding mechanisms are explained with particular focus on the role hydrogen bonding plays in the change of specificity for a galactose specific lectin. Furthermore, different sets of RPLs and their plant equivalents were assayed against the different glycoprotein targets to evaluate the analytical parameters of the lectin-glycoprotein interaction. The obtained LoDs reached by the RPLs were lower than those of their plant counterparts apart from one, exhibiting RPLPL LoD ratios of 0.8, 2.5, 14.2 and 380 for the sets of lectins specific to fucose, α-mannose, β-galactose and sialic acid, respectively. Such enhancement in analytical parameters of RPLs shows their applicability in protein purification and as bioanalytical tools for glycan analysis and biosensor development.Detection of lead (II) in water sources is of high importance for protection from this toxic contaminant. This paper presents the development and approbation of a lateral flow test strip of lead (II) with the use of phenylboronic acid as chelating agent and oligocytosine chain as receptor for the formed complexes. To locate the bound lead (II) on the test strip, phenylboronic acid was conjugated with carrier protein (bovine serum albumin) and applied as a binding line. In turn, the oligocytosine was conjugated with gold nanoparticle to provide coloration of the finally formed complexes (bovine serum albumin - phenylboronic acid - lead (II) - oligocytosine - gold nanoparticle). This combination of two binding molecules provides the «sandwich » assay with direct dependence of label binding from the analyte content. The technique is characterized by high sensitivity (0.05 ng mL-1) and the absence of cross-reactions with other metal ions which are often satellite in natural waters. The developed lateral flow tests were successfully applied for lead (II) detection in water. Time of the assay was 5 min. The reached parameters confirm efficiency of the proposed technique for rapid and non-laborious testing under nonlaboratory conditions.Currently, organic artificial enzymes as biocatalysts have been extensively used to construct various colorimetric sensors. However, exploiting a potential organic artificial enzyme with high catalytic efficiency still remains a challenge. To address this issue, herein, we synthesize an acridone derivative 10-benzyl-2-amino-acridone (BAA). The synthesized BAA exhibits an intrinsic visible-light-stimulated oxidase-like activity, which is capable of oxidizing various chromogenic substrates without destructive hydrogen peroxide (H2O2) under visible light stimulation, resulting in colored products. The reaction system can be regulated by switching light on and off, which is milder and more reliable means than others H2O2-dependent. The photocatalytic mechanism of BAA is investigated in detail. However, l-ascorbic acid (AA), an antioxidant generating from the acid phosphatase (ACP)-mediated hydrolysis of 2-phospho-l-ascorbic acid (AAP), is able to inhibit the catalytic activity of BAA. Based on the above properties, a facile, photo-switchable and low-cost colorimetric sensing strategy is developed for ACP detection. The linear range is 0.05-2.5 U/L (r = 0.9994), and the limit of detection (LOD) is 0.0415 U/L. Moreover, the proposed sensing system can be applied for monitoring ACP activity in practical samples, demonstrating promising applications in clinical analysis and biosensor platform.Hyperspectral imaging has been widely used for different kinds of applications and many chemometric tools have been developed to help identifying chemical compounds. However, most of those tools rely on factorial decomposition techniques that can be challenging for large data sets and/or in the presence of minor compounds. The present study proposes a pixel-based identification (PBI) approach that allows readily identifying spectral signatures in Raman hyperspectral imaging data. This strategy is based on the identification of essential spectral pixels (ESP), which can be found by convex hull calculation. As the corresponding set of spectra is largely reduced and encompasses the purest spectral signatures, direct database matching and identification can be reliably and rapidly performed. The efficiency of PBI was evaluated on both known and unknown samples, considering genuine and falsified pharmaceutical tablets. We showed that it is possible to analyze a wide variety of pharmaceutical formulations of increasing complexity (from 5 to 0.

Autoři článku: Overgaardknight0318 (Hopper Vinson)