Ottosenjacobson2562
ss accurate than Bayesian methods. Overall, weighted methods achieved modest accuracy gains compared to GBLUP. Nevertheless, the computational efficiency of the AM-BLUP might be valuable at higher marker density, including with whole-genome sequencing data. Furthermore, weighted GRM are particularly useful to account for large variance loci in the single-step GBLUP.
The AM-BLUP is an attractive method to automatically identify and weight genomic regions with large effects on complex traits. However, the method was less accurate than Bayesian methods. Overall, weighted methods achieved modest accuracy gains compared to GBLUP. Nevertheless, the computational efficiency of the AM-BLUP might be valuable at higher marker density, including with whole-genome sequencing data. Furthermore, weighted GRM are particularly useful to account for large variance loci in the single-step GBLUP.
Endophytic bacteria are considered as symbionts living within plants and are influenced by abiotic and biotic environments. Pathogen cause biotic stress, which may change physiology of plants and may affect the endophytic bacterial communiy. Here, we reveal how endophytic bacteria in tumorous stem mustard (Brassica juncea var. tumida) are affected by plant physiological changes caused by Plasmodiophora brassicae using 16S rRNA high-throughput sequencing.
The results showed that Proteobacteria was the dominant group in both healthy roots and clubroots, but their abundance differed. At the genus level, Pseudomonas was dominant in clubroots, whereas Rhodanobacter was the dominant in healthy roots. Hierarchical clustering, UniFrac-weighted principal component analysis (PCA), non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) indicated significant differences between the endophytic bacterial communities in healthy roots and clubroots. The physiological properties including soluble sugar, soluble protein, methanol, peroxidase (POD) and superoxide dismutase (SOD) significantly differed between healthy roots and clubroots. The distance-based redundancy analysis (db-RDA) and two-factor correlation network showed that soluble sugar, soluble protein and methanol were strongly related to the endophytic bacterial community in clubroots, whereas POD and SOD correlated with the endophytic bacterial community in healthy roots.
Our results illustrate that physiologcial changes caused by P. brassicae infection may alter the endophytic bacterial community in clubroots of tumorous stem mustard.
Our results illustrate that physiologcial changes caused by P. brassicae infection may alter the endophytic bacterial community in clubroots of tumorous stem mustard.
DELLAs play key roles in plant gibberellin signaling pathways and are generally important in plant development and growth. However, DELLAs in many plant taxa have not yet been systematically analyzed.
In our study, we searched for DELLA genes across 58 green plant genomes and found 181 DELLAs. Structure analysis showed some DELLA domains do not contain "D-E-L-L-A" sequences and instead contain similar domains, including DGLLA and DSLLH domains. "VHYNP" motifs in plant DELLAs comprise 23 types of sequences, while some DELLAs did not contain GRAS domains. In grape, we found that the DELLA protein GSVIVT01015465001 contains an F-box domain, while apple DELLA proteins MDP0000220512 and MDP0000403162 contain a WW domain and a BCIP domain, respectively. These DELLAs can be divided into 22 homologous groups and 17 orthologous groups, and 35 paralogous genes were identified. In total, 35 positively selected genes (PSGs) and 121 negatively selected genes (NSGs) were found among DELLAs based on selective pressure analysis, with an average K
of NSGs that was significantly higher than that of PSGs (P < 0.05). Among the paralogous groups, CBI and Fop were significantly positively correlated with GC, GC1, GC2, GC12, and GC3, while CAI was significantly positively correlated with GC, GC1, GC12, and GC. The paralogous groups with ω values exceeding 1 had significantly higher K
values. We also found some paralogous groups with ω values exceeding 1 that differed in their motifs.
This study provides helpful insights into the evolution of DELLA genes and offers exciting opportunities for the investigation of DELLA functions in different plants.
This study provides helpful insights into the evolution of DELLA genes and offers exciting opportunities for the investigation of DELLA functions in different plants.The global health crisis due to the fast spread of coronavirus disease (COVID-19) has caused major disruption in all aspects of healthcare. Transplantation is one of the most affected sectors, as it relies on a variety of services that have been drastically occupied to treat patients affected by COVID-19. With this report from two transplant centers in Italy, we aim to reflect on resource organization, organ allocation, virus testing and transplant service provision during the course of the pandemic and to provide actionable information highlighting advantages and drawbacks.To what extent can we preserve the noble purpose of transplantation in times of increased danger? Strategies to minimize risk exposure to the transplant population and health- workers include systematic virus screening, protection devices, social distancing and reduction of patients visits to the transplant center. learn more While resources for the transplant activity are inevitably reduced, new dilemmas arise to the transplant community further optimization of time constraints during organ retrievals and implantation, less organs and blood products donated, limited space in the intensive care unit and the duty to maintain safety and outcomes.
Neprilysin has an essential role in regulating fluid balance and vascular resistance, and neprilysin inhibitors have shown beneficial effects in patients with heart failure. However, the potential predictive value of neprilysin levels as a biomarker for cardiovascular risk remains unclear. The aim of this study was to assess the prognostic value of soluble neprilysin (sNEP) levels in patients with ischemic heart disease.
Neprilysin levels were measured in 694 consecutive patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI). These patients were classified into two groups according to their serum levels of neprilysin and categorized into the lower neprilysin group (n = 348) and the higher neprilysin group (n = 346). The primary clinical endpoint was all-cause mortality, and the secondary endpoint was a composite of major adverse cardiac events (MACE).
The median sNEP level was 76.0 pg/ml. The median sNEP levels were higher in patients with left ventricular ejecti CAD. In the LVEF less then 40% group, increased sNEP levels may be associated with a higher risk of all-cause death.
Low temperature is a limiting factor of rice productivity and geographical distribution. Wild rice (Oryza rufipogon Griff.) is an important germplasm resource for rice improvement. It has superior tolerance to many abiotic stresses, including cold stress, but little is known about the mechanism underlying its resistance to cold.
This study elucidated the molecular genetic mechanisms of wild rice in tolerating low temperature. Comprehensive transcriptome profiles of two rice genotypes (cold-sensitive ce 253 and cold-tolerant Y12-4) at the germinating stage under cold stress were comparatively analyzed. A total of 42.44-68.71 million readings were obtained, resulting in the alignment of 29,128 and 30,131 genes in genotypes 253 and Y12-4, respectively. Many common and differentially expressed genes (DEGs) were analyzed in the cold-sensitive and cold-tolerant genotypes. Results showed more upregulated DEGs in the cold-tolerant genotype than in the cold-sensitive genotype at four stages under cold stress. Gene ontology enrichment analyses based on cellular process, metabolic process, response stimulus, membrane part, and catalytic activity indicated more upregulated genes than downregulated ones in the cold-tolerant genotype than in the cold-sensitive genotype. Quantitative real-time polymerase chain reaction was performed on seven randomly selected DEGs to confirm the RNA Sequencing (RNA-seq) data. These genes showed similar expression patterns corresponding with the RNA-Seq method. Weighted gene co-expression network analysis (WGCNA) revealed Y12-4 showed more positive genes than 253 under cold stress. We also explored the cold tolerance gene LTG5 (Low Temperature Growth 5) encoding a UDP-glucosyltransferase. The overexpression of the LTG5 gene conferred cold tolerance to indica rice.
Gene resources related to cold stress from wild rice can be valuable for improving the cold tolerance of crops.
Gene resources related to cold stress from wild rice can be valuable for improving the cold tolerance of crops.
The blue pigmentation of Japanese gentian flowers is due to a polyacylated anthocyanin, gentiodelphin, and all associated biosynthesis genes and several regulatory genes have been cloned and characterized. However, the final step involving the accumulation of anthocyanins in petal vacuoles remains unclear. We cloned and analyzed the glutathione S-transferases (GSTs) in Japanese gentian that are known to be involved in anthocyanin transport in other plant species.
We cloned GST1, which is expressed in gentian flower petals. Additionally, this gene belongs to the Phi-type GST clade related to anthocyanin biosynthesis. We used the CRISPR/Cas9-mediated genome editing system to generate loss-of-function GST1 alleles. The edited alleles were confirmed by Sanger and next-generation sequencing analyses. The GST1 genome-edited lines exhibited two types of mutant flower phenotypes, severe (almost white) and mild (pale blue). The phenotypes were associated with decreased anthocyanin accumulation in flower petals. Incribed herein may be useful for in vivo investigations of the roles of transport-related genes in gentian plants.
Many insects can develop differential biotypes on variable host plants, but the underlying molecular factors and mechanisms are not well understood. To address this issue, transcriptome profiling analyses were conducted for two biotypes of the cereal aphid, Sitobion avenae (Fabricius), on both original and alternative plants.
Comparisons between both biotypes generated 4174 differentially expressed unigenes (DEGs). In their response to host plant shift, 39 DEGs were shared by both biotypes, whereas 126 and 861 DEGs occurred only in biotypes 1 and 3, respectively. MMC (modulated modularity clustering) analyses showed that specific DEGs of biotypes 1 and 3 clustered into five and nine transcriptional modules, respectively. Among these DEGs, defense-related genes underwent intensive expression restructuring in both biotypes. However, biotype 3 was found to have relatively lower gene transcriptional plasticity than biotype 1. Gene enrichment analyses of the abovementioned modules showed functional divergence of insect biotypes and adaptive evolution of insect populations.
Limited data are available on the effect of antiretroviral treatment (ART) or Tenofovir disoproxil fumarate (TDF) on renal function in Ethiopians. We aimed to assess factors associated with renal function changes during the first year of ART with special focus on TDF.
HIV positive persons who were ≥ 18 years of age and eligible for ART initiation were recruited. Creatinine measurement to estimate glomerular filtration rate (eGFR) and spot urine analyses were performed at baseline and after 3, 6 and 12 months of ART. Univariate and multivariate linear regression and univariate logistic regression were used to determine factors associated with eGFR as continuous and categorical variable respectively. A linear mixed model was used to assess 12 month eGFR difference in TDF and non-TDF based regimen.
Of 340 ART-naïve HIV patients with baseline renal function tests, 82.3% (279/339) were initiated on a TDF based ART regimen. All patients were on non-nucleoside reverse transcriptase inhibitors (NNRTI) based ART regimen.