Ottosencain5060

Z Iurium Wiki

We report on the combination of chemical mutagenesis, azithromycin selection and next-generation sequencing (Mut-Seq) for the identification of small nucleotide variants that decrease the susceptibility of Streptococcus pneumoniae to the macrolide antibiotic azithromycin. Mutations in the 23S ribosomal RNA or in ribosomal proteins can confer resistance to macrolides and these were detected by Mut-Seq. By concentrating on recurrent variants, we could associate mutations in genes implicated in the metabolism of glutamine with decreased azithromycin susceptibility among S. pneumoniae mutants. Glutamine synthetase catalyses the transformation of glutamate and ammonium into glutamine and its chemical inhibition is shown to sensitize S. pneumoniae to antibiotics. A mutation affecting the ribosomal-binding site of a putative ribonuclease J2 is also shown to confer low-level resistance. Mut-Seq has the potential to reveal chromosomal changes enabling high resistance as well as novel events conferring more subtle phenotypes.Bacteriophage defences are divided into innate and adaptive systems. Serratia sp. ATCC 39006 has three CRISPR-Cas adaptive immune systems, but its innate immune repertoire is unknown. Here, we re-sequenced and annotated the Serratia genome and predicted its toxin-antitoxin (TA) systems. TA systems can provide innate phage defence through abortive infection by causing infected cells to 'shut down', limiting phage propagation. To assess TA system function on a genome-wide scale, we utilized transposon insertion and RNA sequencing. CSF-1R inhibitor Of the 32 TA systems predicted bioinformatically, 4 resembled pseudogenes and 11 were demonstrated to be functional based on transposon mutagenesis. Three functional systems belonged to the poorly characterized but widespread, AbiE, abortive infection/TA family. AbiE is a type IV TA system with a predicted nucleotidyltransferase toxin. To investigate the mode of action of this toxin, we measured the transcriptional response to AbiEii expression. We observed dysregulated levels of tRNAs and propose that the toxin targets tRNAs resulting in bacteriostasis. A recent report on a related toxin shows this occurs through addition of nucleotides to tRNA(s). This study has demonstrated the utility of functional genomics for probing TA function in a high-throughput manner, defined the TA repertoire in Serratia and shown the consequences of AbiE induction.A novel Gram-stain-negative, non-flagellated, non-motile, rod-shaped (0.4-0.6×1.8-2.5 µm), aerobic bacterial strain, designated JLT21T, was isolated from seawater of a shallow-sea hydrothermal system. Growth occurred with 0-4.0 % (w/v) NaCl (optimum, 2.0 % NaCl), at 8-45 °C (optimum, 25 °C) and at pH 3.0-10.0 (optimum, pH 7.0). Analysis of 16S rRNA gene sequences revealed that strain JLT21T showed the highest 16S rRNA gene sequence similarity to Gaetbulibacter aquiaggeris KEM-8T (97.2 %), Gaetbulibacter marinus IMCC1914T (96.9 %) and Yeosuana aromativorans GW1-1T (96.9 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JLT21T clustered with Y. aromativorans GW1-1T. The predominant respiratory quinone of strain JLT21T was menaquinone-6 (MK-6). Polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, three unidentified glycolipids and four unidentified lipids. The major fatty acids of strain JLT21T were iso-C15  0 (21.7 %), C16  1 ω6c/ω7c (11.5 %) and iso-C17  0 3-OH (10.9 %). The DNA G+C content of strain JLT21T was 32.6 %. On the basis of polyphasic analysis, strain JLT21T is considered to represent a novel species of the genus Yeosuana, for which the name Yeosuana marina sp. nov. is proposed. The type strain of Yeosuana marina is JLT21T (=CGMCC 1.15787T=JCM 31511T). The study helps us better understand the bacterial species in the shallow-sea hydrothermal system and their adaptations to the hydrothermal environment.Plasmids are the key element in horizontal gene transfer in the microbial community. Recently, a large number of experimental and computational methods have been developed to obtain the plasmidomes of microbial communities. Distinguishing transmissible plasmid sequences, which are derived from conjugative or at least mobilizable plasmids, from non-transmissible plasmid sequences in the plasmidome is essential for understanding the diversity of plasmids and how they regulate the microbial community. Unfortunately, due to the highly fragmented characteristics of DNA sequences in the plasmidome, effective identification methods are lacking. In this work, we used information entropy from information theory to assess the randomness of synonymous codon usage over 4424 plasmid genomes. The results showed that for all amino acids, the choice of a synonymous codon in conjugative and mobilizable plasmids is more random than that in non-transmissible plasmids, indicating that transmissible plasmids have different sequenead of resistance genes and virulence factors associated with plasmids. PlasTrans is freely available via https//github.com/zhenchengfang/PlasTrans.The University of Gondar College of Veterinary Medicine and Animal Sciences (UoG-CVMASc) and the Ohio State University College of Veterinary Medicine (OSU-CVM) developed an objective methodology to assess the curriculum of veterinary institutions and implement changes to create a curriculum that is harmonized with OIE standards while also covering the needs and realities of Gondar and Ethiopia. The process, developed under the sponsorship of the World Organisation for Animal Health (OIE) Veterinary Education Twinning Programme, is outlined in this article with the hope that it can be applied by other countries wishing to improve national veterinary services (VS) through the improvement of their academic programs. The plan created by the UoG-OSU Twinning team consisted of an in-depth curriculum assessment and development process, which entailed three consecutive stages. Stage 1 (Curriculum Assessment) included the design and development of an Evaluation Tool for OIE Day 1 Graduating Veterinarian Competencies in recent graduates, and the mapping and evaluation of the current UoG-CVMASc curriculum based on the OIE Veterinary Education Core Curriculum.

Autoři článku: Ottosencain5060 (Glerup Meyers)