Ottekjeldsen9907

Z Iurium Wiki

Chlorine disinfection inactivates pathogens in drinking water, but meanwhile it causes the formation of halogenated disinfection byproducts (DBPs), which may induce adverse health effects. Humans are unavoidably exposed to halogenated DBPs via tap water ingestion. Boiling of tap water has been found to significantly reduce the concentrations of halogenated DBPs. In this study, we found that compared with boiling only, adding ascorbate (vitamin C) or carbonate (baking soda) to tap water and then boiling the water further reduced the level of total organic halogen (a collective parameter for all halogenated DBPs) by up to 36% or 28%, respectively. Adding ascorbate removed the chlorine residual in tap water and thus prevented the formation of more halogenated DBPs in the boiling process. Adding carbonate elevated pH of tap water and consequently enhanced the hydrolysis (dehalogenation) of halogenated DBPs or led to the formation of more trihalomethanes that might volatilize to air during the boiling process. The comparative developmental toxicity of the DBP mixtures in the water samples was also evaluated. The results showed that adding a tiny amount of sodium ascorbate or carbonate (2.5-5.0 mg/L) to tap water followed by boiling for 5 min reduced the developmental toxicity of tap water to a substantially lower level than boiling only. The addition of sodium ascorbate or carbonate to tap water in household could be realized by preparing them in tiny pills. This study suggests simple and effective methods to reduce the adverse effects of halogenated DBPs on humans through tap water ingestion.Methamphetamine, mainly consumed as an illicit drug, is a potent addictive psychostimulant that has been detected in surface water at concentrations ranging from nanograms to micrograms per litre, especially in Middle and East Europe. this website The aim of this study was to expose brown trout (Salmo trutta fario) to environmental (1 μg L-1) and higher (50 μg L-1) concentrations of methamphetamine for 35 days with a four-day depuration phase to assess the possible negative effects on fish health. Degenerative liver and heart alterations, similar to those described in mammals, were observed at both concentrations, although at different intensities. Apoptotic changes in hepatocytes, revealed by activated caspase-3, were found in exposed fish. The parent compound and a metabolite (amphetamine) were detected in fish tissues in both concentration groups, in the order of kidney > liver > brain > muscle > plasma. Bioconcentration factors ranged from 0.13 to 80. A therapeutic plasma concentration was reached for both compounds in the high-concentration treatment. This study indicates that chronic environmental concentrations of methamphetamine can lead to health issues in aquatic organisms.Application of biochar (BC) derived from rice straw has generated increasing interest in long-term storage of soil organic carbon (SOC), however its carbon (C) sequestration potential vary widely among agricultural soils despite the same BC dose used. These discrepancies in the ability of soils to sequester C after BC application are poorly understood. Metabolic quotient (qCO2) is a reflection of "microbial efficiency" and linked to SOC turnover across ecosystems. Therefore, we investigated the SOC sequestration and qCO2 in a Yellow River alluvium paddy soil (YP) and a quaternary red clay paddy soil (QP) under rice-wheat annual rotation following 4-year of BC application rate of 11.3 Mg ha-1 per cropping season. BC application consistently brought 65.3 Mg C ha-1 into the soils over 4-year experimental period but increased SOC by 57.6 Mg C ha-1 in YP and 64.5 Mg C ha-1 in QP. Calculating SOC mass balance showed 11.7% of BC-C losses from YP and only 1.16% from QP. BC application stimulated the G+ bacterial, fungi, and actinomycetes by increasing O-alkyl C content in YP, while decreased the same microorganisms by decreasing anomeric C-H content in QP. Importantly, higher clay and amorphous Fe (Feo) contents in QP after BC application protected SOC from further decomposition, which in turn decreased microorganisms and resulted in higher SOC sequestration than YP. Our results indicated that soil properties controlled the extent of SOC sequestration after BC application and site-specific soil properties must be carefully considered to maximize long-term SOC sequestration after BC application.Electro-bioremediation is a promising technology for remediation of soil contaminated with persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs). During electro-bioremediation, electrical fields have been shown to increase pollutant degradation. However, it remains unclear whether there is an optimal strength for the electrical field applied that is conductive to the maximum role played by microbes. This study aimed to determine the optimal strength of electric field through the analysis of the effects of different voltages on the microbial community and activity. Four bench-scale experiments with voltages of 0, 1, 2 and 3 V cm-1 were conducted for 90 days in an aged PAH-contaminated soil. The spatiotemporal changes of the soil pH, moisture content and temperature, microbial biomass and community structure, and the degradation extent of PAHs were researched over 90 days. The results indicated that the total microbial biomass and degradation activity were highest at voltages of 2 V cm-1. The concentration of total phospholipid fatty acids, used to quantify soil microbial biomass, reached 65.7 nmol g-1 soil, and the mean degradation extent of PAHs was 44.0%. Similarly, the maximum biomass of actinomycetes, bacteria and fungus also occurred at the voltage of 2 V cm-1. The Gram-positive/Gram-negative and (cy170+cy 190)/(161ω7+181ω7) ratios also showed that the intensity of electric field and electrode reactions strongly influenced the microbial community structure. Therefore, to optimize the electro-bioremediation of PAH-contaminated soil, the strength of electric field needs to be selected carefully. This work provides reference for the development of novel electrokinetically enhanced bioremediation processes.

Autoři článku: Ottekjeldsen9907 (Wise Dillard)