Olsenejlersen4516

Z Iurium Wiki

Tectona grandis L.f., known as teak, is one of the most valuable tropical hardwood species that has been extensively planted in tropical zones, covering about 6,8 million hectares (Kollert and Kleine 2017). Recent advances in silvicultural management and use of improved clones have enhanced productivity and wood quality of teak plantations in Brazil. However, the incidence of diseases has increased over time being a threat to sustainability of commercial teak plantations. Therefore, forest pathology studies have been conducted in Brazil to minimize the risks of losses caused by the diseases on teak, ensuring the expected economic profitability. In a recent disease survey conducted in Midwest of Brazil, almost one thousand teak trees showing typical die-back symptoms with root collar rot were found. The diseased trees showed undersize leaves displaying yellowish to pale brown color, followed by wilt, defoliation and death. At the base of the trunk, root collar rot was observed, with sloughing and deteriorationy days after inoculation, all of the previously mentioned symptoms were observed for all inoculated plants, while control plants showed only scars at the inoculation point. The pathogen was reisolated from all five of the inoculated plants. Kretschmaria zonata has been reported on teak in Nigeria (West 1938) and in Mexico (Cibrian Tovar et al. 2014). However, this is the first report of K. YC-1 solubility dmso zonata on T. grandis for Brazil and the first report anywhere to include Koch's postulates, proving the etiology of the disease.Coriander (Coriandrum sativum L.) is one of the most important vegetables used as a seasoning in China. During the summer of 2019 and 2020, two-month-old coriander plants with stem and root rot were observed in commercial fields located in Tianjin, China. Symptoms were first observed when temperatures were about 24°C. Diseased plants had chlorotic lower leaves, were stunted, had rotted roots and stems, and eventually wilted and died (Fig. S1). In severe cases, disease incidence was approximately 85%. Plant samples with the same symptoms were collected from five fields by five-point sampling method (4 plants/point; 20 plants/field), out of which twenty plants were arbitrarily selected for pathogen isolation. Root tissue fragments (3 mm2; 3 fragements/plant) at the boundary of the symptomatic area were excised, washed in 1% NaClO for 2 min, rinsed in sterile distilled water (SDW), and incubated on PDA containing 50 mg/liter of streptomycin sulfate. Plates were incubated at 25°C for 5 days in the dark. 25% of thnd identification was confirmed by morphological and molecular methods. To our knowledge, this is the first report of F. equiseti causing coriander stem and root rot in China. This pathogen poses a threat to coriander production, and its accurate identification is necessary to develop effective management strategies.Late-season bunch rot causes significant crop loss for grape growers in wet and humid climates. For 3 years (2016 to 2018), we integrated prebloom mechanized defoliation (MD) in the fruit zone and bloom gibberellin (GA) applications, either alone or in combination, into the bunch rot control program of Vignoles, a commercially valuable grape variety that is highly susceptible to bunch rot. We hypothesized that both treatments would decrease bunch rot through modification of cluster architecture or fruit zone microclimate compared with vines treated with the standard chemical control program. Grapevines were trained to two popular training systems, four-arm Kniffin (4AK) and high-wire bilateral cordon (HWC). Treatment responses varied between training systems. MD, alone or in combination with GA, reduced bunch rot incidence and severity every year on 4AK-trained vines, an effect attributed mainly to fruit zone improvements. Conversely, MD alone did not reduce bunch rot incidence on HWC-trained vines, despite significant improvements in cluster architecture (reduced number of berries per cluster and cluster compactness). GA applications were more effective than MD at reducing cluster compactness, regardless of training system. As a result, GA reduced bunch rot incidence and severity when applied alone or with MD on 4AK- and HWC-trained vines. All treatments positively improved fruit-soluble sugar concentration on both training systems, while positive effects on titratable acidity were more consistent across training systems with MD.Industrial hemp (Cannabis sativa L.) is an important annual herbaceous plant that has great economic value. In March 2020, many small to large galls were observed on the roots of industrial hemp plants growing in a field in Tianya District, Sanya City, Hainan Province, China. The diseased plants did not show obvious aboveground symptoms. Females were obtained by dissecting the galls under a stereomicroscope. Second-stage juveniles (J2s) were collected for 24-48 h from egg masses hatching at 25°C. The morphological characteristics of females and J2s were observed and measured with a Nikon E200 microscope at 100× and 400× magnification. The perineal patterns of females were oval, with coarse and smooth striae, moderately high to high dorsal arches, and lacking distinct lateral lines. Measurements of females (n = 20) included vulval slit length = 26.4 ± 2.7 (23.6 to 31.2) µm, vulval slit to anus distance = 22.1 ± 2.4 (18.9 to 24.7) µm. The J2s had long and narrow tails with bluntly rounded tail tips and distinct non-inoculated seedlings were used as controls. At 60 d after inoculation, all inoculated plants exhibited gall symptoms on the roots similar to those in the field, and the nematode reproduction factor (final population density/initial population density) was 18.2. No symptoms were observed on control plants. These results confirmed the pathogenicity of M. enterolobii on industrial hemp. To our knowledge, this is the first report of industrial hemp as a new host of M. enterolobii in China. As M. enterolobii has a broad host range, a strong pathogenicity, and a high reproduction rate, it could become a major threat to industrial hemp production. Further monitoring and research on effective control strategies are needed.

Autoři článku: Olsenejlersen4516 (Antonsen Birk)