Olesendecker8694
Background and Objective Chronic Obstructive Pulmonary Disease (COPD) is a common chronic respiratory disease that in the long term may develop into respiratory failure or even cause death and may coexist with other diseases. Over time, it may incur huge medical expenses, resulting in a heavy socio-economy burden. The BODE (Body mass index, airflow Obstruction, Dyspnea, and Exercise capacity) index is a predictor of the number and severity of acute exacerbations of COPD. This study focused on the correlation between the BODE index, comorbidity, and healthcare resource utilization in COPD. Patients and Methods This is a retrospective study of clinical outcomes of COPD patients with complete BODE index data in our hospital from January 2015 to December 2016. Based on the patients' medical records in our hospital's electronic database from January 1, 2015 to August 31, 2017, we analyzed the correlation between BODE index, Charlson comorbidity index (CCI), and medical resources. Results Of the 396 patients with COPD who met the inclusion criteria, 382 (96.5%) were male, with an average age of 71.3 ± 8.4 years. Healthcare resource utilization was positively correlated with the BODE index during the 32 months of retrospective clinical outcomes. The study found a significant association between the BODE index and the CCI of COPD patients (p less then 0.001). In-hospitalization expenses were positively correlated with CCI (p less then 0.001). Under the same CCI, the higher the quartile, the higher the hospitalization expenses. BODE quartiles were positively correlated with number of hospitalizations (p less then 0.001), hospitalization days (p less then 0.001), hospitalization expenses (p = 0.005), and total medical expenses (p = 0.024). Conclusion This study demonstrates the value of examining the BODE index and comorbidities that can predict healthcare resource utilization in COPD. © 2020 Li et al.Objective To develop a practicable nomogram aimed at predicting the risk of severe exacerbations in COPD patients at three and five years. Methods COPD patients with prospective follow-up data were extracted from Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) obtained from National Heart, Lung and Blood Institute (NHLBI) Biologic Specimen and Data Repository Information Coordinating Center. We comprehensively considered the demographic characteristics, clinical data and inflammation marker of disease severity. Cox proportional hazard regression was performed to identify the best combination of predictors on the basis of the smallest Akaike Information Criterion. A nomogram was developed and evaluated on discrimination, calibration, and clinical efficacy by the concordance index (C-index), calibration plot and decision curve analysis, respectively. Internal validation of the nomogram was assessed by the calibration plot with 1000 bootstrapped resamples. Results Among 1711 COPD patients, 523 (30.6%) suffered from at least one severe exacerbation during follow-up. After stepwise regression analysis, six variables were determined including BMI, severe exacerbations in the prior year, comorbidity index, post-bronchodilator FEV1% predicted, and white blood cells. Nomogram to estimate patients' likelihood of severe exacerbations at three and five years was established. The C-index of the nomogram was 0.74 (95%CI 0.71-0.76), outperforming ADO, BODE and DOSE risk score. Besides, the calibration plot of three and five years showed great agreement between nomogram predicted possibility and actual risk. Decision curve analysis indicated that implementation of the nomogram in clinical practice would be beneficial and better than aforementioned risk scores. Conclusion Our new nomogram was a useful tool to assess the probability of severe exacerbations at three and five years for COPD patients and could facilitate clinicians in stratifying patients and providing optimal therapies. © 2020 Chen et al.Objective The Tilburg Frailty Indicator (TFI) is a self-report user-friendly questionnaire for assessing multidimensional frailty among community-dwelling older people. 2-MeOE2 ic50 The main aim of this study is to re-evaluate the validity of the TFI, both cross-sectionally and longitudinally, focusing on the predictive value of the total TFI and its physical, psychological, and social domains for adverse outcomes disability, indicators of healthcare utilization, and falls. Methods The validity of the TFI was determined in a sample of 180 Dutch community-dwelling older people aged 70 years and older. The participants completed questionnaires including the TFI, the Groningen Activity Restriction Scale (GARS) for assessing disability, and questions with regard to health care utilization and falls in 2016 and again one year later. Results The physical and psychological domains of the TFI were significantly correlated as expected with adverse outcomes disability, many indicators of healthcare utilization, and falls. Regression analyses showed that physical frailty was mostly responsible for the effect of frailty on the adverse outcomes. The cross-sectional and longitudinal predictive validity of total frailty with respect to disability and receiving personal care was excellent, evidenced by Areas Under the Curves (AUCs) >0.8. In most cases, using the cut-off point 5 for total frailty ensured the best values for sensitivity and specificity. Conclusion The present study provided new, additional evidence for the validity of the TFI for assessing frailty in Dutch community-dwelling older people aiming to prevent or delay adverse outcomes, including disability. © 2020 Gobbens et al.Purpose Red blood cell (RBC) distribution width (RDW) is known to reflect the heterogeneity of RBC volume, which may be associated with cardiovascular events or mortality after myocardial infarction. However, the association between RDW and stroke, especially regarding endpoints such as death, remains ambiguous. This study aimed to explore the prognostic value of RDW and its effect on mortality among patients with acute ischemic stroke (AIS) undergoing intravenous thrombolysis (IVT) after one year. Patients and Methods We retrospectively reviewed patients with AIS treated with IVT between January 2016 and March 2018. We grouped the patients according to modified ranking scale (MRS) scores as follows0-2, favorable functional outcome group; and 3-6, unfavorable functional outcome. Predictors were determined using multivariate logistic regression (MVLR). The area under receiver-operating characteristic curve (AUC) was used to evaluate the predictive capability of variables. Furthermore, the Cox proportional hazard model was used to assess the contribution of risk factors to the outcome of death at one year later.