Olesenakhtar8433
About 95% of Eucalyptus species present an organ known as a lignotuber, a basal woody swelling that holds a large number of dormant buds in a protected position along with carbohydrates and other nutrients. The importance of this trait in Eucalyptus species relates to its regenerative capacity, particularly in the context of coppicing practices and survival in regions of high abiotic stress, especially fire. In this study, we identified and characterized a genomic region associated with the lignotuber trait in commercially important Eucalyptus species by developing a polymorphic marker that co-segregates with lignotuber presence. The marker was then converted into a SCAR (Sequence Characterized Amplified Region) marker, validated in four other Eucalyptus species and hybrids and analyzed in silico. Our investigation presents a marker (ELig) that is effective in identifying individuals with lignotuber. In silico and Southern blot analyses show that the marker is present in a single copy region and is related to auxilin/cyclin-G associated kinase, containing a DnaJ domain. The ELig marker is an important tool that can be used to manage crosses in Eucalyptus breeding programs and inform studies involving lignotuber development and genetics.Crocetin (CRT) has shown various neuroprotective effects such as antioxidant activities and the inhibition of amyloid β fibril formation, and thus is a potential therapeutic candidate for Alzheimer's disease (AD). However, poor water solubility and bioavailability are the major obstacles in formulation development and pharmaceutical applications of CRT. selleck products In this study, a novel water-soluble CRT-γ-cyclodextrin inclusion complex suitable for intravenous injection was developed. The inclusion complex was nontoxic to normal neuroblastoma cells (N2a cells and SH-SY5Y cells) and AD model cells (7PA2 cells). Furthermore, it showed stronger ability to downregulate the expression of C-terminus fragments and level of amyloid β in 7PA2 cell line as compared to the CRT free drug. Both inclusion complex and CRT were able to prevent SH-SY5Y cell death from H2O2-induced toxicity. The pharmacokinetics and biodistribution studies showed that CRT-γ-cyclodextrin inclusion complex significantly increased the bioavailability of CRT and facilitated CRT crossing the blood-brain barrier to enter the brain. This data shows a water-soluble γ-cyclodextrin inclusion complex helped to deliver CRT across the blood-brain barrier. This success should fuel further pharmaceutical research on CRT in the treatment for AD, and it should engender research on γ-cyclodextrin with other drugs that have so far not been explored.Hyperprogressive disease (HPD), an unexpected acceleration of tumor growth kinetics, is described in cancer patients treated with anti-PD-1/anti-PD-L1 agents. Here, our aim was to take into consideration the host and explore whether single nucleotide polymorphisms (SNPs) in key genes involved in immune response might predispose to HPD. DNA was extracted from blood-samples from 98 patients treated under CPI monotherapy. Four candidate genes (PD-1, PD-L1, IDO1 and VEGFR2) and 15 potential SNPs were selected. The TGKR (ratio of the slope of tumor growth before treatment and the slope of tumor growth on treatment) was calculated. Hyperprogression was defined as a TGKR≥2. TGKR calculation was feasible for 80 patients (82%). HPD was observed for 11 patients (14%) and was associated with shorter overall survival (P = 0.003). In univariate analysis, HPD was significantly associated with age ≥70 y (P = 0.025), immune-related toxicity (P = 0.016), VEGFR2 rs1870377 A/T or A/A (P = 0.005), PD-L1 rs2282055 G/T or G/G (P = 0.024) and PD-L1 rs2227981 G/A or A/A (P = 0.024). Multivariate analysis confirmed the correlation between HPD and age ≥70 y (P = 0.006), VEGFR2 rs1870377 A/T or A/A (P = 0.007) and PD-L1 rs2282055 G/T or G/G (P = 0.018). Immunogenetics could become integral predictive factors for CPI-based immunotherapy.Variants in the EYA4 gene are known to lead to autosomal dominant non-syndromic hereditary hearing loss, DFNA10. To date, 30 variants have been shown to be responsible for hearing loss in a diverse set of nationalities. To better understand the clinical characteristics and prevalence of DFNA10, we performed genetic screening for EYA4 mutations in a large cohort of Japanese hearing loss patients. We selected 1,336 autosomal dominant hearing loss patients among 7,408 unrelated Japanese hearing loss probands and performed targeted genome enrichment and massively parallel sequencing of 68 target genes for all patients. Clinical information of cases with mutations in EYA4 was gathered and analyzed from medical charts. Eleven novel EYA4 variants (three frameshift variants, three missense variants, two nonsense variants, one splicing variant, and two single-copy number losses) and two previously reported variants were found in 12 probands (0.90%) among the 1,336 autosomal dominant hearing loss families. The audiometric configuration of truncating variants tends to deteriorate for all frequencies, whereas that of non-truncating variants tends to show high-frequency hearing loss, suggesting a new correlation between genotype and phenotype in DFNA10. The rate of hearing loss progression caused by EYA4 variants was considered to be 0.63 dB/year, as found in this study and previous reports.Several seamounts have been identified as hotspots of marine life in the Azores, acting as feeding stations for top predators, including cetaceans. Passive acoustic monitoring is an efficient tool to study temporal variations in the occurrence and behaviour of vocalizing cetacean species. We deployed bottom-moored Ecological Acoustic Recorders (EARs) to investigate the temporal patterns in acoustic presence and foraging activity of oceanic dolphins at two seamounts (Condor and Gigante) in the Azores. Data were collected in March-May 2008 and April 2010-February 2011. Dolphins were present year round and nearly every day at both seamounts. Foraging signals (buzzes and bray calls) were recorded in >87% of the days dolphin were present. There was a strong diel pattern in dolphin acoustic occurrence and behaviour, with higher detections of foraging and echolocation vocalizations during the night and of social signals during daylight hours. Acoustic data demonstrate that small dolphins consistently use Condor and Gigante seamounts to forage at night. These results suggest that these seamounts likely are important feeding areas for dolphins. This study contributes to a better understanding of the feeding ecology of oceanic dolphins and provides new insights into the role of seamount habitats for top predators.Phosphoenolpyruvate carboxylase (PEPc) is an essential enzyme in plants. A photosynthetic form is present both as dimer and tetramer in C4 and CAM metabolism. Additionally, non-photosynthetic PEPcs are also present. The single, non-photosynthetic PEPc of the unicellular cyanobacterium Synechococcus PCC 7002 (Synechococcus), involved in the TCA cycle, was examined. Using size exclusion chromatography (SEC) and small angle X-ray scattering (SAXS), we observed that PEPc in Synechococcus exists as both a dimer and a tetramer. This is the first demonstration of two different oligomerization states of a non-photosynthetic PEPc. High concentration of Mg2+, the substrate PEP and a combination of low concentration of Mg2+ and HCO3- induced the tetramer form of the carboxylase. Using SEC-SAXS analysis, we showed that the oligomerization state of the carboxylase is concentration dependent and that, among the available crystal structures of PEPc, the scattering profile of PEPc of Synechococcus agrees best with the structure of PEPc from Escherichia coli. In addition, the kinetics of the tetramer purified in presence of Mg2+ using SEC, and of the mixed population purified in presence of Mg2+ using a Strep-tagged column were examined. Moreover, the enzyme showed interesting allosteric regulation, being activated by succinate and inhibited by glutamine, and not affected by either malate, 2-oxoglutarate, aspartic acid or citric acid.Common bean variety choice by farmers in Uganda is driven by seed yield plus end-use quality traits like market class and cooking time. Limited genotype by environment information is available for traits valued by consumers. This research evaluated yield, seed size, hydration properties, and cooking time of 15 common bean genotypes within market classes recognized by consumers along with three farmers' checks at nine on-farm locations in Uganda for two seasons. Yield ranged from 71 to 3,216 kg ha-1 and was largely controlled by location (21.5% of Total Sums of Squares [TSS]), plus the interaction between location and season (48.6% of TSS). Cooking time varied from 19 to 271 minutes with the genotypes Cebo Cela and Ervilha consistently cooking fastest in 24 and 27 minutes respectively. Comparatively, the local checks (NABE-4, NABE-15, and Masindi yellow) took 35 to 45 minutes to cook. Cooking time was largely controlled by genotype (40.6% of TSS). A GGE biplot analysis uncovered the presence of two mega-environments for yield and one mega-environment for cooking time. Identification of mega-environments for these traits will help expedite common bean breeding, evaluation, and variety selection through reduction of number of test environments needed for phenotype evaluations. The high yielding and fast cooking genotypes from this study can be targeted as parental materials to improve existing common bean germplasm for these important traits.Interaction with biological material can alter physicochemical parameters of magnetic nanoparticles and might thereby change their magnetic behavior with potentially important implications for various nanoparticle applications. Little is known about changes of the magnetic behavior that occur during the initial phase of cell binding and uptake. We investigate the magnetic behavior of very small superparamagnetic iron-oxide nanoparticles (VSOP) during initial contact with THP-1 monocytes. We combine real-time magnetic particle spectroscopy (MPS), a fast and sensitive method for specific detection of magnetic nanoparticles in biological specimen with high-pressure-freezing/freeze-substitution transmission electron microscopy (HPF/FS-TEM), enabling us to generate snapshots of the interaction of VSOP with the cellular glycocalyx. MPS reveals significant changes of the dynamic magnetic behavior within seconds after VSOP injection into monocyte suspensions that correlate with the formation of nanoparticle clusters in the glycocalyx. The combination of real-time MPS and HPF/FS-TEM provides an ideal platform to analyze magnetic behaviors of nanoparticles upon interaction with cells and tissues.Globally, the frequency of shark bites is rising, resulting in an increasing demand for shark deterrents and measures to lessen the impact of shark bites on humans. Most existing shark protection measures are designed to reduce the probability of a bite, but fabrics that minimise injuries when a shark bite occurs can also be used as mitigation devices. Here, we assessed the ability of the Ocean Guardian Scuba7 and Kevlar material to reduce the likelihood of blacktip reef sharks, Carcharhinus melanopterus, from feeding, and to minimise injuries from shark bites. Sharks were enticed to consume a small piece of local reef fish (bait) placed between the two Scuba7 electrodes with the deterrents randomly being turned on or kept off. In the second experiment, the bait was attached to a small pouch made of either standard neoprene or neoprene with a protective layer of Kevlar around it. The Scuba7 reduced the proportion of baits being taken by 67%, (from 100% during control trials to 33%). Sharks also took more time to take the bait when the device was active (165 ± 20.