Ogledreier9894

Z Iurium Wiki

t fully characterized potyvirus (Baker and Zettler, 1988; Ciuffo et al., 2006; Kitajima 2020). CoSMV was recently reported infecting Costus spiralis and C. comosus (Alexandre et al. 2020). As far as we know, this is the first report of CoSMV infecting T. spathacea plants.Mulberry (Morus spp.) is an important crop in the sericulture industry as the leaves constitute the primary feed for the silkworm. The availability of diverse genetic sources of resistance to root- knot nematode (RKN; Meloidogyne spp.) are very scanty and therefore, a set of 415 varied exotic and indigenous germplasm accessions were screened under glasshouse conditions. Twenty one accessions were identified as highly resistant and 48 were resistant, the highest numbers of highly resistant/resistant accessions were found in Morus alba. Further, thirty accessions based on rooting ability were evaluated for field resistance at four different locations with infested soil. Finally, eight germplasm accessions; BR-8, Karanjtoli-1, Hosur-C8, Nagalur Estate, Tippu, Calabresa, Thai Pecah and SRDC-3 were identified as potential genetic sources in RKN resistance breeding programs or as resistant rootstock for the establishment of mulberry gardens. Sixteen SSR markers analyzed among the 77 resistant and susceptible accessions, generated 55 alleles, ranging from 2 to 5 with an average of 3.43 alleles per locus. Principle coordinate analysis grouped the accessions on the basis of RKN susceptible and resistant to a greater extent. The RKN susceptible accessions exhibited higher variability as compared to resistant accessions and they were more dispersed. Analysis of molecular variance showed that maximum molecular variance (78%) within the population and 22% between populations. Results of this study indicate that SSR markers are reliable for assessing genetic variability among the RKN resistant and susceptible mulberry accessions.A serious concern for nurseries is the potential for Phytophthora ramorum and other Phytophthora species to colonize roots without inducing aboveground symptoms in plants that then serve as cryptic reservoirs of inoculum. Episodic abiotic stresses that reduce plant water potential can compromise host resistance to trigger disease development from root and crown infections in many Phytophthora-plant interactions. We conducted a series of experiments with root-inoculated Rhododendron plants in a potting soil mix to assess influence of excess salt or water deficit on ramorum blight development and the potential for these abiotic stresses to affect efficacy of oomycete-suppressive chemical soil treatments. In growth chamber trials, P. ramorum colonized roots in both non-salted and salt-treated plants. However, salt treatment offset the benefit realized from soil treatment with mefanoxam (Subdue Maxx) or mandipropamid (Micora), as evidenced by enhanced pathogen colonization of roots. A three-week episode of water stress imposed after chemical treatment but prior to inoculation eliminated protection against P. ramorum root colonization conferred by fosetyl-Al (Aliette). In an outdoor experimental nursery, foliar symptoms were apparent in 23% of root-inoculated plants in two trials and absent in one trial. However, the majority of inoculated plants in all trials had colonized roots with little or no aboveground symptoms. A single application of Subdue Maxx or Aliette reduced root colonization by P. ramorum in Rhododendron plants. Although salt stress did not enhance ramorum blight symptom expression in the nursery, salt partially offset protection from P. ramorum root colonization obtained by Subdue Maxx.Pomegranate (Punica granatum L.) is a non-climacteric and a favorite fruit of tropical, sub-tropical and arid regions of the world. During a survey in autumn 2019, leaf lesions were observed on plants (cv. Kandhari) in different orchards of Muzaffargarh (30°4'27.7572″ N, 71°11'4.7544″ E), a major pomegranate-producing region in Punjab Province. Disease incidence ranged from 17 to 20%. Leaf lesions were initially small (1 to 3 mm in diameter), round, purple or reddish-brown, scattered spots. CWI1-2 ic50 At later stages, spots increased in size and the centers of mature lesions became dark red or black with fungal sporulation. To isolate the pathogen, samples of leaf (5 × 5 mm) were cut from the junction of diseased and healthy tissue, surface disinfected in 75% alcohol for 30 s, sterilized with 6% sodium hypochlorite for 3 min, washed with sterile distilled water three times, air dried in laminar flow hood, and cultured on potato dextrose agar (PDA). After one week of incubation at 25 ± 2°C with a 12-h photoperiod, fungalis sativa (Chaffin et al. 2020) and Brassica oleracea (Zhu et al. 2020). This is the first report of C. globosum causing leaf spot on pomegranate in Pakistan. This finding suggests a potential threat to pomegranate production in Pakistan and further studies should focus on effective prevention and control practices of this disease.Texas is a major producer of cucurbits such as cantaloupe (Cucumis melo L.), but outbreaks of virus-like diseases often adversely affect yields. Little is known about the identity of the causal or associated viruses. During studies conducted in fall 2020 to explore the virome of cucurbit fields in Texas, a commercial cantaloupe field (~4.1 ha) in Cameron County was observed with virus-like symptoms of interveinal chlorotic mottle and foliar chlorosis and disease incidence was estimated at 100%. Virus-like symptoms including mosaic and leaf curl were also observed in six additional fields across five south and central Texas counties of Atascosa, Hidalgo, Fort Bend, Frio, and Wharton. Forty-six plants, which included 32 symptomatic and 14 non-symptomatic, were sampled from these fields for virus diagnosis and each sample was subjected to total nucleic acid extraction according to Dellaporta et. al. (1983). Initially, equal amounts of nucleic acids from 14 symptomatic plants (two/field) were pooled into one compthus expanding the current geographical range of the virus in the U.S. that includes California (Wintermantel et al. 2019) and Georgia (Kavalappara et al. 2021). The abundance of whiteflies of the Bemisia tabaci species complex in south Texas and other major U.S. cucurbit production areas presents additional challenges to virus disease management.

Autoři článku: Ogledreier9894 (Rosenkilde Yildiz)