Odomrobinson2415

Z Iurium Wiki

Solar-to-chemical energy conversion is valuable and sustainable strategy for energy and environmental crisis through photocatalysis. The amorphous SnOx modified BiOCl (Sn-BiOCl) full-spectrum-responsive catalysts were designed and synthesized through solvothermal method. The introduced Sn regulates the growth of BiOCl to form ultrathin nanosheets with surface oxygen vacancies. And the surface modification of SnOx induces interfacial internal electric field via charge redistribution on the interface of BiOCl and SnOx to accelerate the photogenerated charge separation. The modification of SnOx decreased work function of Sn-BiOCl and thus elevated its conduction band and valence band simultaneously, leading enhanced photocatalytic reducibility with the improved generation rate of ·O2-. The surface SnOx and oxygen vacancies of Sn-BiOCl broadened light absorption range and enhanced photocatalytic performance synergistically, resulting in 14-fold increased photodegradation rate of phenol compared with pure BiOCl under full spectrum. M6620 This method is also able to expand to other metal ions (such as Fe3+, In3+ and Sb3+). This work provides a valuable concept in structure regulating for enhanced photocatalytic performance in the removal of organic pollutants by interfacial internal electric field and surface oxygen vacancies.To simultaneously remove carbon and nitrogen from refractory organic wastewater, this study couples the denitrifying biocathode and MnOx/Ti anode to oxidize refractory organic pollutants in the anode chamber and remove NO3--N in the cathode chamber (denitrifying biocathode-electrocatalytic reactor, DBECR). After inoculation, DBECR started up at 1.3 and 1.5 V with NO3--N reduction peak appearing on the cyclic voltammetry curve and increased NO3--N removal by approximately 90 %. Compared to the electrocatalytic reactor without inoculation (ECR), NO3--N removal of DBECR significantly increased from 0.09 to 0.45 kg NO3--N/m3 NCC/d (NCC net cathodic compartment). NO3--N removal correlated well with charges/current flowing through the circuit of DBECR, further validating the presence of electrotrophic denitrifiers. link2 Moreover, coupling of denitrifying biocathode significantly enhanced methylene blue (MB) removal in the anode chamber (0.18 ± 0.002 and 2.92 ± 0.02 g COD/m2/d for ECR and DBECR, respectively). This was because the growth of eletrotrophic denitrifiers increased the cathodic potential and thus the potential of MnOx/Ti anode. The higher potential of MnOx/Ti anode promoted the generation of hydroxyl radicals and consequently promoted MB removal. This study demonstrated that DBECR not only realized nitrogen removal in the cathode chamber, but also enhanced refractory organic carbon degradation in the anode chamber.The occurrence of micropollutants (MPs) including steroid hormones is a global environmental and health challenge. link3 Carbon-based nanoparticles can be incorporated with water treatment processes to allow MP removal by adsorption. The aim was to compare the suitability of such nanoparticles (graphene, graphene oxide, carbon nanotubes and C60) to adsorb steroid hormones for later incorporation in membrane composites. All nanoparticles displayed fast kinetics; carbon nanotubes and graphene showed high adsorption capacities for hormones undeterminable in isotherm studies (over 10 mg/g). External surface adsorption appears to be the most prominent factor impacting adsorption performance. Structure, conformation, geometry and surface charge of nanoparticles can influence the accessibility of surface area through colloidal instability in aqueous solution. Mechanism inspection shows that adsorption initiates at long ranges (up to 10 nm) through hydrophobic and electrostatic interactions. At relatively short ranges (0.2-0.5 nm), adsorption is enhanced by π/π stacking, XH / π (X = C, O) interactions, van der Waals forces and hydrogen bonding. Both long- and short-range forces transporting hormones from the liquid bulk into the adsorbed phase could control the rate. With relatively short residence time required and high adsorption capacity, carbon nanotubes and graphene are promising for incorporation in a membrane composite.This study evaluated the differences in nickel (Ni) and cobalt (Co) solubility in the presence of sulfate reducing bacteria (SRB) to evaluate the feasibility of selective recovery of both metals from mine-impacted waters. A series of sulfate reducing activity tests with Ni, Co and both metals showed that up to 99 % Ni remained soluble despite the availability of sulfide for precipitation, while Co sulfide precipitation always occurred (over 84.5 %). The characterization of proteins in the liquid phase of the experiments revealed that some proteins were only produced in the experiments where Ni displayed higher solubility, suggesting their involvement in metal complexation. Some functions of these proteins included maintaining Ni homeostasis, acting as metalloenzymes and containing Ni-binding ligands. Desulfomicrobium baculatum, Stenotrophomonas maltophilia, and Desulfovibrio magneticus, were the main responsible species producing these proteins.This study investigates wastes and biomass as alternative fuels in a kg-scale burner in terms of combustion characteristics and emissions. Water washing, torrefaction, and their combination are used to improve the properties of the wastes and biomass. The air pollutants in the exhaust of the burner are also analyzed. It could be concluded that the reactivity and average heat supply from the pretreatment are improved significantly. The improvement ratio of average heat supply can be up to 103.5 %, stemming from water-soluble ash removal during water washing. Torrefaction can lift the average heat supply due to the increment of fixed carbon content in the fuels, but it reduces the reactivity owing to the decrement of volatile matters. Most of the raw or pretreated materials can be directly combusted, as a result of lower regulated air pollutants (e.g., NOx, SO2, CO) from them than from coal. Water washing can successfully remove chlorine in the wastes by dissolution since most of the chlorine in the wastes are in salt form. The chlorine reduction significantly reduces the HCl concentration (55-58 % reduction efficiency) and the toxicity concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (78-84 %), while torrefaction increases the toxicity concentration owing to the de novo synthesis.The wide application of plastics led to the wide exposure of plasticizers to the environment. As a new environmental pollutant, plasticizers' toxicity researches were far from enough in fish. To further explore these mechanisms, we used two common plasticizers (Diethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP) expose to grass carp hepatocytes (L8824). The results showed that the mRNA levels of NOD2-RIP2-NF-κB signal pathway and its downstream inflammatory genes were significantly increased compared to those in control group. Then, the levels of mRNAs and proteins of apoptosis markers were changed, and hepatocytes apoptosis was induced. After DBP and DEHP exposure together, there were higher levels of inflammatory factors and the proportion of apoptotic cells. After NOD2 inhibitor treatment, the phenomena mentioned above were obviously alleviated. We conclude that DBP and DEHP exposure at least partially activated the NOD2-RIP2-NF-κB signal pathway in grass carp hepatocytes, and caused inflammation and apoptosis. In terms of hepatotoxicity, there was synergistic relationship between DBP and DEHP. In addition, we put forward new views on the use of plasticizers select low toxicity plasticizers, then reduce the types of plasticizers used and reduce the high toxicity level of mixed plasticizers.A proof-of-concept study evaluates the performance of a novel strategy using photosynthetic microorganisms to soften groundwater instead of using caustic chemicals. The microalga Scenedesmus quadricauda was used to increase the pH of the groundwater via natural photosynthesis. This work applied softening as a pretreatment to ozonation of hard groundwater and mainly focused on investigating the multiple effects of algal softening on the degradation of persistent micropollutants upon subsequent ozonation. The algae-induced alkaline conditions (pH > 10) were favorable to catalyze the formation of OH radicals directly from O3 molecules. Moreover, algal softening removed the strong radical-scavenging carbonate species (HCO3- and CO32-) to a much greater extent than that achieved by chemical softening, which was attributed to the combination of mineral carbonation and metabolic CO2 reduction. The fate of the natural organic matter (NOM) was characterized with spectroscopy, chromatography, and bioassay, which indicates that algal treatment decomposed the NOM to be less susceptible to attack by OH radicals. Consequently, the ozonation of alkaline groundwater achieved a better removal of the micropollutant residues in groundwater. Carbamazepine and diclofenac were used as model chemicals of persistent groundwater contaminants and were almost completely removed with an addition of 1.25 mg O3 L-1 (0.63 mg-O3 mg-C-1).In this article, we have synthesized Co2+-doped BiOBrxCl1-x hierarchical nanostructured microspheres, featuring different degrees of Co2+ doping, displaying excellent photocatalytic performance. X-ray diffraction and Raman spectroscopy indicated that the Co2+ ions were successfully doped into the BiOBrxCl1-x nanocrystals. The photodegradation rate of rhodamine B mediated by a doped BiOBrxCl1-x was 150 % greater than that of the non-doped BiOBr. We ascribe the improved photocatalytic capability of the Co2+-doped BiOBrxCl1-x to a combination of its superior degree of light absorption, more efficient carrier separation, and faster interfacial charge migration. The major active species involved in the photodegradation of RhB also has been investigated. Moreover, the doped BiOBrxCl1-x possessed excellent cellular biocompatibility and displayed remarkable performance in the photocatalytic bacterial inactivation.Environmental risk assessment (ERA) based on effects caused by chronic and longer term exposure is highly relevant. Further, if mechanistic based approaches (e.g. omics) can be included, beyond apical endpoints (e.g. reproduction), the prediction of effects increases. For Cu NMs (and CuCl2) this has been studied in detail, covering multi-omics and apical effects using the soil standard species Enchytraeus crypticus. The intermediate level effects like cell/tissue and organ alterations represent a missing link. In the present study we aimed to 1) perform long term exposure to Cu materials (full life cycle and multigeneration, 46 and 224 days) to collect samples; 2) perform histology and immunohistochemistry on collected samples at 12 time points and 17 treatments; 3) integrate all levels of biological organization onto an adverse outcome pathway (AOP) framework. CuO NMs and CuCl2 caused both similar and different stress response, either at molecular initiating events (MIE) or key events (KEs) of higher level of biological organization. Cell/Tissue and organ level, post-transcriptional and transcriptional mechanisms, through histone modifications and microRNA related protein, were similarly affected. While both Cu forms affected the Notch signalling pathway, CuCl2 also caused oxidative stress. Different mechanisms of DNA methylation (epigenetics) were activated by CuO NMs and CuCl2 at the MIE.

Autoři článku: Odomrobinson2415 (Craven Otto)