Oddershedecompton7218
Tesevatinib potently reduced cell viability [IC50 GBM12 = 11 nmol/L (5.5 ng/mL), GBM6 = 102 nmol/L] and suppressed EGFR signaling in vitro However, tesevatinib efficacy compared with vehicle in intracranial (GBM12, median survival 23 vs. 18 days, P = 0.003) and flank models (GBM12, median time to outcome 41 vs. 33 days, P = 0.007; GBM6, 44 vs. 33 days, P = 0.007) was modest and associated with partial inhibition of EGFR signaling. Overall, tesevatinib efficacy in EGFR-amplified PDX GBM models is robust in vitro but relatively modest in vivo, despite a high brain-to-plasma ratio. This discrepancy may be explained by drug-tissue binding and compensatory signaling.Microglia, the resident immune cells of the CNS, have emerged as key regulators of neural precursor cell activity in the adult brain. However, the microglia-derived factors that mediate these effects remain largely unknown. In the present study, we investigated a role for microglial brain-derived neurotrophic factor (BDNF), a neurotrophic factor with well known effects on neuronal survival and plasticity. Surprisingly, we found that selective genetic ablation of BDNF from microglia increased the production of newborn neurons under both physiological and inflammatory conditions (e.g., LPS-induced infection and traumatic brain injury). Genetic ablation of BDNF from microglia otherwise also interfered with self-renewal/proliferation, reducing their overall density. In conclusion, we identify microglial BDNF as an important factor regulating microglia population dynamics and states, which in turn influences neurogenesis under both homeostatic and pathologic conditions.SIGNIFICANCE STATEMENT (1) Microglial BDNF contributes to self-renewal and density of microglia in the brain. (2) Selective ablation of BDNF in microglia stimulates neural precursor proliferation. read more (3) Loss of microglial BDNF augments working memory following traumatic brain injury. (4) Benefits of repopulating microglia on brain injury are not mediated via microglial BDNF.Peripheral neuropathy (PN) is the most common complication of prediabetes and diabetes. PN causes severe morbidity for Type 2 diabetes (T2D) and prediabetes patients, including limb pain followed by numbness resulting from peripheral nerve damage. PN in T2D and prediabetes is associated with dyslipidemia and elevated circulating lipids; however, the molecular mechanisms underlying PN development in prediabetes and T2D are unknown. Peripheral nerve sensory neurons rely on axonal mitochondria to provide energy for nerve impulse conduction under homeostatic conditions. Models of dyslipidemia in vitro demonstrate mitochondrial dysfunction in sensory neurons exposed to elevated levels of exogenous fatty acids. Herein, we evaluated the effect of dyslipidemia on mitochondrial function and dynamics in sensory axons of the saphenous nerve of a male high-fat diet (HFD)-fed murine model of prediabetes to identify mitochondrial alterations that correlate with PN pathogenesis in vivo We found that the HFD decreased mitochchondrial dynamics and function in cultured neurons, indicating a role for mitochondrial dysfunction in PN progression; however, the effect of elevated circulating fatty acids on the peripheral nervous system in vivo is unknown. In this study, we identify early pathogenic events in sensory nerve axons of mice with high-fat diet-induced PN, including alterations in mitochondrial function, axonal conduction, and intra-axonal calcium, that provide important insight into potential PN mechanisms associated with prediabetes and dyslipidemia in vivo.Sleep spindles are intermittent bursts of 11-15 Hz EEG waves that occur during non-rapid eye movement sleep. Spindles are believed to help maintain sleep and to play a role in sleep-dependent memory consolidation. Here we applied an automated sleep spindle detection program to our large longitudinal sleep EEG dataset (98 human subjects, 6-18 years old, >2000 uninterrupted nights) to evaluate maturational trends in spindle wave frequency, density, amplitude, and duration. This large dataset enabled us to apply nonlinear as well as linear age models, thereby extending the findings of prior cross-sectional studies that used linear models. We found that spindle wave frequency increased with remarkable linearity across the age range. Central spindle density increased nonlinearly to a peak at age 15.1 years. Central spindle wave amplitude declined in a sigmoidal pattern with the age of fastest decline at 13.5 years. Spindle duration decreased linearly with age. Of the four measures, only spindle amplitude showed a ndle amplitude, frequency, density, and duration. The large dataset enabled us to detect nonlinear as well as linear age changes. All measures showed robust age effects that we hypothesize reflect the maturation of thalamocortical circuits and decreasing sleep depth. These findings could guide further research into the cognitive-behavioral correlates of sleep spindles and their underlying brain mechanisms.
Intrasaccular flow disruption with WEB is a safe and efficacious technique that has significantly changed endovascular management of wide-neck bifurcation aneurysms (WNBAs). Use of stent in combination with WEB is occasionally required. We analyzed the frequency of use, indications, safety, and efficacy of the WEB-stent combination.
All aneurysms treated with WEB and stent were extracted from a prospectively maintained database. Patient and aneurysm characteristics, complications, and anatomical results were independently analyzed by a physician independent of the procedures.
From June 2011 to January 2020, 152 patients with 157 aneurysms were treated with WEB. Of these, 17/152 patients (11.2%) with 19/157 aneurysms (12.1%) were treated with WEB device and stent. Indications were very wide neck with a branch emerging from the neck in 1/19 (5.2%) aneurysms and WEB protrusion in 18/19 (94.7%). At 1 month, no morbimortality was reported. At 6 months, anatomical results were complete aneurysm occlusion in 15/17 aneurysms (88.2%), neck remnant in 1/17 (5.9%), and aneurysm remnant in 1/17 (5.9%). At 12 months, there was complete aneurysm occlusion in 13/14 aneurysms (92.9%) and neck remnant in 1/14 (7.1%).
Combining WEB and stent is a therapeutic strategy to manage WNBA. In our series, this combination was used in 11.2% of patients treated with WEB, resulting in no morbidity or mortality with a high efficacy at 6 and 12 months (complete aneurysm occlusion in 88.2% and 92.9%, respectively).
Combining WEB and stent is a therapeutic strategy to manage WNBA. In our series, this combination was used in 11.2% of patients treated with WEB, resulting in no morbidity or mortality with a high efficacy at 6 and 12 months (complete aneurysm occlusion in 88.2% and 92.9%, respectively).