Nymannaldridge7524

Z Iurium Wiki

Therapy-related clonal hematopoiesis (t-CH) is often observed in cancer survivors. This form of clonal hematopoiesis typically involves somatic mutations in driver genes that encode components of the DNA damage response and confer hematopoietic stem and progenitor cells (HSPCs) with resistance to the genotoxic stress of the cancer therapy. Here, we established a model of TP53-mediated t-CH through the transfer of Trp53 mutant HSPCs to mice, followed by treatment with a course of the chemotherapeutic agent doxorubicin. These studies revealed that neutrophil infiltration in the heart significantly contributes to doxorubicin-induced cardiac toxicity and that this condition is amplified in the model of Trp53-mediated t-CH. These data suggest that t-CH could contribute to the elevated heart failure risk that occurs in cancer survivors who have been treated with genotoxic agents.Antibody-mediated glomerulonephritis (AGN) is a clinical manifestation of many autoimmune kidney diseases for which few effective treatments exist. Chronic inflammatory circuits in renal glomerular and tubular cells lead to tissue damage in AGN. These cells are targeted by the cytokine IL-17, which has recently been shown to be a central driver of the pathogenesis of AGN. However, surprisingly little is known about the regulation of pathogenic IL-17 signaling in the kidney. Here, using a well-characterized mouse model of AGN, we show that IL-17 signaling in renal tubular epithelial cells (RTECs) is necessary for AGN development. We also show that Regnase-1, an RNA binding protein with endoribonuclease activity, is a negative regulator of IL-17 signaling in RTECs. Accordingly, mice with a selective Regnase-1 deficiency in RTECs exhibited exacerbated kidney dysfunction in AGN. Mechanistically, Regnase-1 inhibits IL-17-driven expression of the transcription factor IκBξ and, consequently, its downstream gene targets, including Il6 and Lcn2. Moreover, deletion of Regnase-1 in human RTECs reduced inflammatory gene expression in a IκBξ-dependent manner. Overall, these data identify an IL-17-driven inflammatory circuit in RTECs during AGN that is constrained by Regnase-1.BackgroundImmunomodulatory therapy may help prevent heart failure (HF). Data on immune cells and myocardial remodeling in older adults with cardiovascular risk factors are limited.MethodsIn the Multi-Ethnic Study of Atherosclerosis cohort, 869 adults had 19 peripheral immune cell subsets measured and underwent cardiac MRI during the baseline exam, of which 321 had assessment of left ventricular global circumferential strain (LV-GCS). We used linear regression with adjustment for demographics, cardiovascular risk factors, and cytomegalovirus serostatus to evaluate the cross-sectional association of immune cell subsets with left ventricular mass index (LVMI) and LV-GCS.ResultsThe average age of the cohort was 61.6 ± 10.0 years and 53% were women. Higher proportions of γ/δ T cells were associated with lower absolute (worse) LV-GCS (-0.105% [95% CI -0.164%, -0.046%] per 1 SD higher proportion of γ/δ T cells, P = 0.0006). This association remained significant after Bonferroni's correction. Higher proportions of classical monocytes were associated with worse absolute LV-GCS (-0.04% [95% CI -0.07%, 0.00%] per 1 SD higher proportion of classical monocytes, P = 0.04). This did not meet significance after Bonferroni's correction. There were no other significant associations with LV-GCS or LVMI.ConclusionPathways associated with γ/δ T cells may be potential targets for immunomodulatory therapy targeted at HF prevention in populations at risk.FundingContracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, and N01-HC-95169 and grant R01 HL98077 from the National Heart, Lung, and Blood Institute/NIH and grants KL2TR001424, UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 from the National Center for Advancing Translational Sciences/NIH.Heart transplantation is the optimal therapy for patients with end-stage heart disease, but its long-term outcome remains inadequate. Recent studies have highlighted the importance of the melanocortin receptors (MCRs) in inflammation, but how MCRs regulate the balance between alloreactive T cells and Tregs, and whether they impact chronic heart transplant rejection, is unknown. Here, we found that Tregs express MC2R, and MC2R expression was highest among all MCRs by Tregs. Our data indicate that adrenocorticotropic hormone (ACTH), the sole ligand for MC2R, promoted the formation of Tregs by increasing the expression of IL-2Rα (CD25) in CD4+ T cells and activation of STAT5 in CD4+CD25+ T cells. ACTH treatment also improved the survival of heart allografts and increased the formation of Tregs in CD28KO mice. ACTH treatment synergized with the tolerogenic effect of CTLA-4-Ig, resulting in long-term survival of heart allografts and an increase in intragraft Tregs. ACTH administration also demonstrated higher prolongation of heart allograft survival in transgenic mouse recipients with both complete KO and conditional KO of PI3Kγ in T cells. Finally, ACTH treatment reduced chronic rejection markedly. These data demonstrate that ACTH treatment improved heart transplant outcomes, and this effect correlated with an increase in Tregs.Apolipoprotein B (ApoB) is the primary protein of chylomicrons, VLDLs, and LDLs and is essential for their production. Defects in ApoB synthesis and secretion result in several human diseases, including abetalipoproteinemia and familial hypobetalipoproteinemia (FHBL1). In addition, ApoB-related dyslipidemia is linked to nonalcoholic fatty liver disease (NAFLD), a silent pandemic affecting billions globally. Due to the crucial role of APOB in supplying nutrients to the developing embryo, ApoB deletion in mammals is embryonic lethal. selleck compound Thus, a clear understanding of the roles of this protein during development is lacking. Here, we established zebrafish mutants for 2 apoB genes apoBa and apoBb.1. Double-mutant embryos displayed hepatic steatosis, a common hallmark of FHBL1 and NAFLD, as well as abnormal liver laterality, decreased numbers of goblet cells in the gut, and impaired angiogenesis. We further used these mutants to identify the domains within ApoB responsible for its functions. By assessing the ability of different truncated forms of human APOB to rescue the mutant phenotypes, we demonstrate the benefits of this model for prospective therapeutic screens. Overall, these zebrafish models uncover what are likely previously undescribed functions of ApoB in organ development and morphogenesis and shed light on the mechanisms underlying hypolipidemia-related diseases.The AP-1 transcription factor c-Jun is required for Ras-driven tumorigenesis in many tissues and is considered as a classical proto-oncogene. To determine the requirement for c-Jun in a mouse model of K-RasG12D-induced lung adenocarcinoma, we inducibly deleted c-Jun in the adult lung. Surprisingly, we found that inactivation of c-Jun, or mutation of its JNK phosphorylation sites, actually increased lung tumor burden. Mechanistically, we found that protein levels of the Jun family member JunD were increased in the absence of c-Jun. In c-Jun-deficient cells, JunD phosphorylation was increased, and expression of a dominant-active JNKK2-JNK1 transgene further increased lung tumor formation. Strikingly, deletion of JunD completely abolished Ras-driven lung tumorigenesis. This work identifies JunD, not c-Jun, as the crucial substrate of JNK signaling and oncogene required for Ras-induced lung cancer.Diagnosis of organ transplant rejection relies upon biopsy approaches to confirm alloreactive T cell infiltration in the graft. Immune molecular monitoring is under investigation to screen for rejection, though these techniques have suffered from low specificity and lack of spatial information. ImmunoPET utilizing antibodies conjugated to radioisotopes has the potential to improve early and accurate detection of graft rejection. ImmunoPET is capable of noninvasively visualizing the dynamic distribution of cells expressing specific immune markers in the entire body over time. In this work, we identify and characterize OX40 as a surrogate biomarker for alloreactive T cells in organ transplant rejection and monitor its expression by utilizing immunoPET. In a dual murine heart transplant model that has both syngeneic and allogeneic hearts engrafted in bilateral ear pinna on the recipients, OX40 immunoPET clearly depicted alloreactive T cells in the allograft and draining lymph node that were not observed in their respective isograft counterparts. OX40 immunoPET signals also reflected the subject's immunosuppression level with tacrolimus in this study. OX40 immunoPET is a promising approach that may bridge molecular monitoring and morphological assessment for improved transplant rejection diagnosis.The 'clinical target distribution' (CTD) has recently been introduced as a promising alternative to the binary clinical target volume (CTV). However, a comprehensive study that considers the CTD, together with geometric treatment uncertainties, was lacking. Because the CTD is inherently a probabilistic concept, this study proposes a fully probabilistic approach that integrates the CTD directly in a robust treatment planning framework. First, the CTD is derived from a reported microscopic tumor infiltration model such that it explicitly features the probability of tumor cell presence in its target definition. Second, two probabilistic robust optimization methods are proposed that evaluate CTD coverage under uncertainty. The first method minimizes the expected-value (EV) over the uncertainty scenarios and the second method minimizes the sum of the expected value and standard deviation (EV-SD), thereby penalizing the spread of the objectives from the mean. Both EV and EV-SD methods introduce the CTD in the objective function by using weighting factors that represent the probability of tumor presence. The probabilistic methods are compared to a conventional worst-case approach that uses the CTV in a worst-case optimization algorithm. To evaluate the treatment plans, a scenario-based evaluation strategy is implemented that combines the effects of microscopic tumor infiltrations with the other geometric uncertainties. The methods are tested for five lung tumor patients, treated with intensity-modulated proton therapy. The results indicate that for the studied patient cases, the probabilistic methods favor the reduction of the esophagus dose but compensate by increasing the high-dose region in a low conflicting organ such as the lung. These results show that a fully probabilistic approach has the potential to obtain clinical benefits when tumor infiltration uncertainties are taken into account directly in the treatment planning process.

IgG4-related hypophysitis is an autoimmune hypophysitis associated with IgG4-related disease. Swelling of the pituitary gland is responsive to steroid therapy, but the prognosis of pituitary function after the treatment remains unclear. The present case implies that transiently improved pituitary function can re-worsen during long-term follow-up in IgG4-related hypophysitis. A 71-year-old male patient with IgG4-related hypophysitis visited a nearby hospital with malaise, anorexia, and polyuria. Pituitary dysfunction was suspected, so he was referred to our hospital for further examination. Imaging studies and laboratory data showed swelling of the pituitary gland and panhypopituitarism, which dramatically improved following steroid therapy. There was no evidence of relapsing IgG4-related disease during prednisolone tapering. Pituitary function was examined after 4 years under treatment with low-dose prednisolone; surprisingly, anterior pituitary function had worsened again. Our case suggests a need for continuous monitoring of pituitary function after steroid therapy for IgG4-related hypophysitis.

Autoři článku: Nymannaldridge7524 (Caldwell Regan)