Noonanthestrup2318
ranes for both rural areas and emergency response.This study investigates the thermal stratification responses of a monomictic reservoir operated under different facilities. The analysis of 60-year long data showed that the reservoir's thermal regime varies with season and withdrawal scheme and is affected by upstream reach control through the vertical curtain. Isothermal conditions exist during winter (December-March) while stratification onsets in spring (starting April), intensifies in summer (August) and weakens during fall (October-November). Considering summer stratification, deep hypolimnetic withdrawals through the penstock intake promoted thicker epilimnion, with low values of thermal stability (Schmidt Stability Index, SSI) and thermocline strength index (TSI). Meanwhile, shallow withdrawals using selective outflow system resulted in narrower epilimnion, with larger TSI for no curtain scenario and larger SSI for with curtain scenario. Strongest thermoclines do not necessarily translate to largest magnitudes of thermal stability. Longer duration of stratification is associated with shallow withdrawals. Depending on the outflow depth and the occurrence of prolonged hot or cold atmospheric conditions, the onset of stratification could be likely shifted early or late. The 3D numerical simulation determined the individual effects of each operation, which strongly supported the results of the long term analysis. Since thermal stratification directly influences the reservoir's water quality regime, this study can be a helpful reference in optimizing the water quality management of the reservoir.Extreme weather events are occurring more frequently as a result of climate change. In October 2019, eastern Japan was hit by Hagibis, a large and high-speed typhoon. This unprecedented typhoon caused the evacuation of over 4000 people, injured more than 300 people, and damaged more than 98,000 dwellings throughout the affected area. Because floods are one of the most devastating natural disasters in Asia, providing an effective early warning system (EWS) is critical to reducing disaster impacts. However, warnings based only on natural hazard monitoring do not offer sufficient protection. Integrating natural hazard monitoring and social media data could improve warning systems to enhance the awareness of disaster managers and citizens about emergency events. We analyzed time-series data including rainfall intensity, 90-min-effective rainfall, and river water level as well as Twitter data related to disaster events during the 5-day period from 11 to 15 October, focusing on the most affected areas in Japan. The analysis included more than 60,000 tweets. Our analysis confirmed the utility of the statistical approach of outbreak detection with social media data in the early detection and local identification of multiple-flood events, and the results from the municipality-level analyses show that tweet frequencies related to the flood disaster ontological categories were significantly correlated to temporal variations in the hazard monitoring data. Thus, flood detection at the administrative level using social media data combined with current hazard monitoring data can enable a decision-driven EWS design. Interactive approaches for decision-making and knowledge production should continue to be considered in the face of climate-change-induced disasters.
Ossifying fibromyxoid tumor (OFMT) is an uncommon soft tissue neoplasm, with malignant potential and unclear histogenesis. OFMT exhibits a spectrum of histopathologic features including benign (typical), atypical and malignant subtypes. To the best of our knowledge, about 300 cases have been reported worldwide. We present the first reported case from Qatar.
A 36-year old Egyptian male, with no comorbidities was admitted electively as a day case for excision of left thigh suspected sebaceous cyst under local anesthesia. History, physical examination and soft tissue ultrasound imaging were unremarkable. Intraoperatively, the patient was found to have a hard-calcified mass adhering to the surrounding fascia which was excised en bloc. The histopathology result was of ossifying fibromyxoid tumor. The post-operative course along with 40 months follow-up were uneventful in terms of surgical complications and recurrence.
OFMT has marked features in terms of cytology. Though it is difficult to diagnose preoperatively, it should be considered in tumors involving soft tissue that demonstrate prominent ossification and calcification.
OFMT is a rare soft tissue neoplasm, and should be considered as a differential diagnosis in any subcutaneous swelling with a bony component. All OFMT patients should undergo a long course of follow-up to rule out and assess any recurrence or metastasis in the malignant variants.
OFMT is a rare soft tissue neoplasm, and should be considered as a differential diagnosis in any subcutaneous swelling with a bony component. All OFMT patients should undergo a long course of follow-up to rule out and assess any recurrence or metastasis in the malignant variants.
Chronic otitis media are still present and often overlooked. Our observation is interesting by the association of double purulent complications of chronic otitis media paravertebral abscess and lateral sinus thrombosis.
We report the case of a 54-year-old man with a long history of NPC, who presented to the hospital with severe right earache, associated with headache and 39°fever. CT scan and MRI assessed a complicated chronic otitis media of the middle ear by thrombophlebitis of the lateral sinus and posterior paravertebral abscess. He was put under antibiotic therapy and cortical mastoidectomy two weeks later. Nearly one-year follow up reveals a satisfactory recovery.
The chronic otitis media with effusion deserves careful monitoring. The early diagnosis and adequate treatment of this life-threatening lesion may result in excellent prognosis. Especially for young people in developing countries.
The chronic otitis media with effusion deserves careful monitoring. The early diagnosis and adequate treatment of this life-threatening lesion may result in excellent prognosis. Especially for young people in developing countries.Aberrant extracellular matrix (ECM) assembly surrounding implanted biomaterials is the hallmark of the foreign body response, in which implants become encapsulated in thick fibrous tissue that prevents their proper function. While macrophages are known regulators of fibroblast behavior, how their phenotype influences ECM assembly and the progression of the foreign body response is poorly understood. In this study, we used in vitro models with physiologically relevant macrophage phenotypes, as well as controlled release of macrophage-modulating cytokines from gelatin hydrogels implanted subcutaneously in vivo to investigate the role of macrophages in ECM assembly. Primary human macrophages were polarized to four distinct phenotypes, which have each been associated with fibrosis, including pro-inflammatory M1, pro-healing M2, and a hybrid M1/M2, generated by exposing macrophages to M1-and M2-promoting stimuli simultaneously. Additionally, macrophages were first polarized to M1 and then to M2 (M1→M2) to generateemical analysis and second harmonic generation microscopy showed that the release of IL4+IL13 increased total sulfated glycosaminoglycan content and decreased fibril alignment, which is typically associated with less fibrotic tissue. Together, these results show that hybrid M1/M2 macrophages regulate ECM assembly, and that shifting the balance towards M2 may promote architectural and compositional changes in ECM with enhanced potential for downstream remodeling.How to make the nanoparticles evade immune surveillance and deeply penetrate the tumor tissues is of great importance to maximize the therapeutic efficacy of nanomedicines. PYR-41 cost Here, a near-infrared (NIR) light-responsive extracellular vesicle as a nanoplatform is developed to realize long circulation in blood, deep penetration in tumor tissues and rapid body elimination after the treatment. Like a "Trojan horse", the nanoplatform is obtained by hiding the anti-tumor soldiers (DOX and 4.2 nm Ag2S quantum dots (QDs)) into the macrophage cell-secreted vesicle through electroporation. The natural composition and tumor targeting activity of the extracellular vesicles enable the nanoplatform to achieve a high accumulation in tumor and the in vivo biodistribution can be monitored by NIR fluorescence imaging of the Ag2S QDs. After the nanomedicines accumulate at the tumor sites, the soldiers will be released from the "Trojan horse" by utilizing the NIR photothermal effect of the Ag2S QDs. The released ultrasmall QDs and DOX can penetrate the whole tumor with a diameter of about 9 mm and effectively kill the tumor cells. Moreover, the inorganic QDs can be rapidly excreted from the body through renal clearance after the treatment to avoid the potential toxicity.Biomaterials with attenuated adverse host tissue reactions, and meanwhile, combining biocompatibility with mimicry of mechanical and biochemical cues of native extracellular matrices (ECM) to promote integration and regeneration of tissues are important for many biomedical applications. Further, the materials should also be tailorable to feature desired application-related functions, like tunable degradability, injectability, or controlled release of bioactive molecules. Herein, a non-covalently assembled, injectable hydrogel system based on oligopeptides interacting with sulphated polysaccharides is reported, showing high tolerability and biocompatibility in immunocompetent hairless mice. Altering the peptide or polysaccharide component considerably varies the in vivo degradation rate of the hydrogels, ranging from a half-life of three weeks to no detectable degradation after three months. The hydrogel with sulphated low molecular weight hyaluronic acid exhibits sustained degradation-mediated release of heparin-binding molecules in vivo, as shown by small animal magnetic resonance imaging and fluorescence imaging, and enhances the expression of vascular endothelial growth factor in hydrogel surrounding. In vitro investigations indicate that M2-macrophages could be responsible for the moderate difference in pro-angiogenic effects. The ECM-mimetic and injectable hydrogels represent tunable bioactive scaffolds for tissue engineering, also enabling controlled release of heparin-binding signalling molecules including many growth factors.We synthesized unique water-soluble synthetic-polymer, styrene-maleic acid copolymer (SMA) conjugated glucosamine (SG); which formed a stable complex with boric acid (BA). This complex had a mean particle size of 15 nm by light scattering, and single peak in gel permeation chromatography. The particles were taken up by tumor cells five times faster than free BA in vitro and liberated BA at acidic tumor pH (5-7). Liberated BA inhibited glycolysis and resulted in tumor suppression in vivo. Intravenously injected SGB-complex did bind with albumin, and plasma half-life was about 8 h in mice, and accumulated to tumor tissues about 10 times more than in normal organs. IC50 of SGB-complex for HeLa cells under pO2 of 6-9% was about 20 μg/ml (free BA equivalent), 150 times more potent than free BA. Neutron irradiation of human oral cancer cells with SGB-complex resulted in 16 times greater cell-killing than that without SGB-complex. In vivo antitumor effect was evaluated after neutron irradiation only once in SCC VII tumor bearing mice and significant tumor suppression was confirmed.