Nissenblackwell1947

Z Iurium Wiki

The aim of this work was to study the bioaugmentation of hydrolysis acidification (HA) by a halophilic bacterial consortium. A bacterial consortium was enriched at 5% salinity, and it decolorized metanil yellow G (MYG) at salinities of 1%-15% and dye concentrations of 100-400 mg/L under static conditions. A HA system was constructed to assess the effectiveness of bioaugmentation by the halophilic bacterial consortium. The HA system showed obviously better performance for decolorization and CODMn removal and presented higher the 5-day biological oxygen demand (BOD5)/CODMn (B/C) ratio after bioaugmentation. MiSeq sequencing results indicated that the bacterial communities remarkably shifted and that the bacterial diversity was increased after bioaugmentation. Marinobacterium invaded the native microbe community and became the dominant bacterial genus in the bioaugmented HA, and it played a key role in azo dye decolorization. Therefore, bioaugmentation with a halophilic bacterial consortium improved the HA system for decolorization of azo compounds.Bio-plastics are eco-friendly biopolymers finding tremendous application in the food and pharmaceutical industries. Bio-plastics have suitable physicochemical, mechanical properties, and do not cause any type of hazardous pollution upon disposal but have a high production cost. This can be minimized by screening potential bio-polymers producing strains, selecting inexpensive raw material, optimized cultivation conditions, and upstream processing. These bio-plastics specifically microbial-produced bio-polymers such as polyhydroxyalkanoates (PHAs) find application in food industries as packaging material owing to their desirable water barrier and gas permeability properties. The present review deals with the production, recovery, purification, characterization, and applications of PHAs. This is a comprehensive first review will also focus on different strategies adopted for efficient PHA production using dairy processing waste, its biosynthetic mechanism, metabolic engineering, kinetic aspects, and also biodegradability testing at the lab and pilot plant level. In addition to that, the authors will be emphasizing more on novel PHAs nanocomposites synthesis strategies and their commercial applicability.In this work, a laboratory-scale alternating anaerobic/aerobic biofilter (A/O BF) filled with self-made steel slag media was constructed, where the integrated biological and crystalline phosphorus removal process was realized to remove phosphorus and achieve phosphorus recovery from wastewater. selleck compound Phosphorus accumulating organisms (PAOs) were successfully enriched within 30 days operation, the maximum phosphate removal efficiency was close to 80% under the optimal conditions with the anaerobic time of 34 h, HRT of 4 h and influent COD of 300 mg/L. The analysis of SEM-EDS and XRD indicated that hydroxyapatite (HAP) crystals were formed inside biofilms without addition of chemical reagents. The high phosphate environment created by PAOs and the release of Ca2+ from the steel slag media might be responsible for the generation of HAP. These findings have crucial implications for the application BF technology to remove and recover phosphorus from wastewater.To rapidly estimate the biochemical methane potential (BMP) of feedstocks, different multivariate regression models were established between BMP and the physicochemical indexes or near-infrared spectroscopy (NIRS). Mixed fermentation feedstocks of corn stover and livestock manure were rapidly detected BMP in anaerobic co-digestion (co-AD). The results showed that the predicted accuracy of NIRS model based on characteristic wavelengths selected by multiple competitive adaptive reweighted sampling outperformed all regression models based on the physicochemical indexes. For the NIRS regression model, coefficient of determination, root mean squares error, relative root mean squares error, mean relative error and residual predictive deviation of the validation set were 0.982, 6.599, 2.713%, 2.333% and 7.605. The results reveal that the predicted accuracy of NIRS model is very high, and meet the requirements of rapid prediction of BMP for co-AD feedstocks in practical biogas engineering.This study reports the vermicomposting of banana crop waste biomass by Eisenia fetida. Cow dung has been used as bulking agent in this study. The experiment was conducted in six vermireactors containing different ratios of banana leaf waste biomass (BL) and cow dung (CD) for 105 days. Earthworm activity significantly reduced pH, TOC, CN and CP ratio of the wastes. Whereas macronutrients and micronutrients content increased after vermicomposting. TOC content of wastes reduced by 40-64% and CN ratio of the vermicomposts was in the range of 8.9-24.3. The benefit ratio for heavy metals (Cu, Fe, Zn, Cd, Pb, Mn and Cr) was in the range of 0.23-3.44. The results indicated that the growth and fecundity of the earthworms was best in the vermireactors having 20-40% BL. Finally, it was concluded that vermicomposting can be included in the overall scheme of banana crop waste management.Polymeric microspheres (MSs) and nanospheres (NSs) composed of synthetic and natural polymers can encapsulate anticancer drugs, among other therapeutics, acting as drug carriers to release them at controlled rates over long periods of time. These carriers present several potential advantages including simple preparation methods, suitable control over the sustained release of medications or stem cells, triggered release resulting from stimulus-responsive delivery, improved physical properties such as porosity and stable scaffolds for tissue engineering, and possible applications as microreactors and nanoreactors compared to conventional drug delivery systems. Moreover, many of these factors can impact drug release rates by polymeric MSs and NSs. Herein, drug delivery systems based on polymeric MSs and NSs are described and compared according to recent advances and challenges, and poignant thoughts on what the field needs to progress are presented.The use of two-dimensional liquid chromatography (2D-LC) continues to grow as the advantages over 1D-LC become increasingly clear in specific application areas, and the number of experienced 2D-LC users increases. As with any technique, however, there is always room for innovation that could improve the performance of 2D-LC. In recent years the technical aspects and potential benefits of a volume-based mode of operation were studied in detail for 1D-LC. The salient features of this approach that are immediately interesting for use in 2D-LC are two-fold. First, the ability to maintain a nominally constant pressure in the second dimension by dynamically adjusting the flow rate to compensate for changes in the viscosity of the fluid in the 2D flow path provides a means to more fully utilize the pressure capability of the pumping system, and accelerates separations in the second dimension (2D). Second, constant pressure operation minimizes physical stress on the system components and the 2D column. In this paper we discuss the aspects of volume-based operation of LC that are particularly relevant to 2D-LC systems.

Autoři článku: Nissenblackwell1947 (Odgaard Marker)