Nilssonstrand9965

Z Iurium Wiki

25 × 106 s-1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.Coronavirus disease 2019 (COVID-19), a condition associated with SARS-CoV-2, typically results in mild infection in infants and children. However, children with risk factors such as chronic lung disease and immunosuppression have higher risk of severe illness from COVID-19. We report a case of a 27-week-gestation extremely premature infant born to a mother with COVID-19 infection. The infant, initially treated for surfactant deficiency, developed worsening hypoxic respiratory failure on the fifth day of life requiring escalating ventilatory support, an elevated level of C-reactive protein, thrombocytopenia, and an elevated level of d-dimer. The infant was positive for SARS-CoV-2 by RT-PCR from Day 1 to Day 42 of his life. The infant responded to a seven-day course of dexamethasone with a gradually decreasing oxygen requirement and could be extubated to non-invasive ventilation by the end of the fifth week after birth. The infant is currently on home oxygen by nasal cannula. Prolonged shedding of the virus may be a unique feature of the disease in premature infants. Extreme prematurity, immature lungs, and an immunocompromised status may predispose these infants to severe respiratory failure and a prolonged clinical course. Instituting appropriate COVID-19 protocols to prevent the spread of the disease in the neonatal intensive care unit (NICU) is of utmost importance. Infection with SARS-CoV-2 may have implications in the management of extremely premature infants in the NICU.

Alzheimer's disease (AD) is known to accelerate muscle loss in the elderly due to reduced physical performance, increasing the prevalence and severity of sarcopenia. This study was undertaken to determine whether simple bedside exercise training may facilitate muscle growth and strengthening in moderate-degree AD patients.

This study was conducted on 26 prospectively recruited women admitted to a nursing hospital, who had moderate AD and sarcopenia. They were randomly and evenly divided into the control and exercise groups. For five sessions per week, those in the exercise group underwent 30 min of therapist-supervised exercise by simply kicking a balloon connected to the ceiling by a piece of string while lying on a bed. Additional exercise was encouraged, and isometric maximal voluntary contraction (MVC) and skeletal muscle mass index (SMI) were measured and calculated after 12 weeks.

Through simple exercise training for 12 weeks, MVCs for hip flexion and knee extension significantly increased in the exercise group. However, no significant differences in SMI were found between the two groups.

We believe that our simple exercise method can be applied to patients with AD for maintaining and enhancing the strength of the muscles of the lower extremities.

We believe that our simple exercise method can be applied to patients with AD for maintaining and enhancing the strength of the muscles of the lower extremities.Pericarpium Citri Reticulatae 'Chachiensis' (PCR-Chachiensis), the pericarps of Citri Reticulatae Blanco cv. Chachiensis, is a food condiment and traditional medicine in southeast and eastern Asia. Its rich and various bacterial community awaits exploration. The present study is the first report on probiotic screening and characterization of bacteria from PCR-Chachiensis. Based on 64 culturable bacterial isolates, 8 strains were screened out to have great survival in the simulated gastrointestinal stressful condition, being nonhemolytic and without biogenic amine formation. They were identified by 16S rRNA gene sequencing as two Bacillus, three Lactobacillus, and three strains from Bacillales. Their probiotic properties, cholesterol-lowering potential and carbohydrate utilization capability were further investigated. Though these eight strains all displayed distinct cholesterol removal potential, Bacillus licheniformis N17-02 showed both remarkable cholesterol removal capability and presence of bile salt hydrolase gene, as well as possessing most of the desirable probiotic attributes. Thus, it could be a good probiotic candidate with hypocholesterolemic potential. Bacillus megaterium N17-12 displayed the widest carbohydrate utilization profile and the strongest antimicrobial activity. Hence, it was promising to be used as a probiotic in a host and as a fermentation starter in fermented food or feed.Chronic wounds are commonly colonized with bacteria in a way that prevents full healing process and capacity for repair. Nano-chitosan, a biodegradable and nontoxic biopolymer, has shown bacteriostatic activity against a wide spectrum of bacteria. Effectively, pulsed electromagnetic fields are shown to have both wound healing enhancement and antibacterial activity. This work aimed to combine the use of nano-chitosan and exposure to a pulsed electric field to overcome two common types of infectious bacteria, namely P. aeruginosa and S. aureus. Here, bacteria growing rate, growth kinetics and cell cytotoxicity (levels of lactate dehydrogenase, protein leakage and nucleic acid leakage) were investigated. Our findings confirmed the maximum antibacterial synergistic combination of nano-chitosan and exposure against P. aeruginosa than using each one alone. It is presumed that the exposure has influenced bacteria membrane charge distribution in a manner that allowed more chitosan to anchor the surface and enter inside the cell. Significantly, cell cytotoxicity substantiates high enzymatic levels as a result of cell membrane disintegration. In conclusion, exposure to pulsed electromagnetic fields has a synergistic antibacterial effect against S. aureus and P. aeruginosa with maximum inhibitory effect for the last one. Extensive work should be done to evaluate the combination against different bacteria types to get general conclusive results. The ability of using pulsed electromagnetic fields as a wound healing accelerator and antibacterial cofactor has been proved, but in vivo experimental work in the future to verify the use of such a new combination against infectious wounds and to determine optimum treatment conditions is a must.Gaming is widespread among adolescents and has typically been viewed as an activity for boys. There are however a growing number of female gamers and we need to learn more about how gender affects gaming. The aim of this study is to both quantify gaming among Norwegian adolescents and explore how gender differences are perceived. A mixed method approach was used to capture gaming experiences among boys and girls. Survey data (N = 5607) was analyzed descriptively, and five focus groups were conducted, applying thematic analysis. Statistics showed that boys from the age of 14 use video games up to 5 times more than girls, while girls are much more on social media. From the focus groups, we found that boys did not view social media as socially significant as gaming and that there is a greater social acceptance of gaming among boys than among girls. Gender differences in video gaming are not necessarily a problem per se, as they may reflect gender-specific motivations and interests. However, the study also finds that girls feel less encouraged than boys to play video games due to different gender-related experiences of video gaming. Therefore, gendered barriers in video gaming must be explored in future research.Image intensifiers are used internationally as advanced military night-vision devices. They have better imaging performance in low-light-level conditions than CMOS/CCD. The intensified CMOS (ICMOS) was developed to satisfy the digital demand of image intensifiers. In order to make the ICMOS capable of color imaging in low-light-level conditions, a liquid-crystal tunable filter based color imaging ICMOS was developed. Due to the time-division color imaging scheme, motion artifacts may be introduced when a moving target is in the scene. To solve this problem, a deformable kernel prediction neural network (DKPNN) is proposed for joint denoising and motion artifact removal, and a data generation method which generates images with color-channel motion artifacts is also proposed to train the DKPNN. The results show that, compared with other denoising methods, the proposed DKPNN performed better both on generated noisy data and on real noisy data. Therefore, the proposed DKPNN is more suitable for color ICMOS denoising and motion artifact removal. A new exploration was made for low-light-level color imaging schemes.Information switching and swapping seem to be fundamental elements of quantum communication protocols. Another crucial issue is the presence of entanglement and its level in inspected quantum systems. In this article, a formal definition of the operation of the swapping local quantum information and its existence proof, together with some elementary properties analysed through the prism of the concept of the entropy, are presented. As an example of the local information swapping usage, we demonstrate a certain realisation of the quantum switch. Entanglement levels, during the work of the switch, are calculated with the Negativity measure and a separability criterion based on the von Neumann entropy, spectral decomposition and Schmidt decomposition. Results of numerical experiments, during which the entanglement levels are estimated for systems under consideration with and without distortions, are presented. The noise is generated by the Dzyaloshinskii-Moriya interaction and the intrinsic decoherence is modelled by the Milburn equation. This work contains a switch realisation in a circuit form-built out of elementary quantum gates, and a scheme of the circuit which estimates levels of entanglement during the switch's operating.The onset of the Coronavirus 2019 (COVID-19) pandemic has challenged the worldwide healthcare sector, including dentistry. The highly infectious nature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and risk of transmission through aerosol generating procedures has profoundly impacted the delivery of dental care services globally. As dental practices with renewed infection control strategies and preventive measures are re-opening in the "new normal" period, it is the responsibility of healthcare professionals to constantly analyze new data and limit the spread of COVID-19 in dental care settings. In the light of new variants of SARS-CoV-2 rapidly emerging in different geographic locations, there is an urgent need to comply more than ever with the rigorous public health measures to mitigate COVID-19 transmission. The aim of this article is to provide dental clinicians with essential information regarding the spread of SARS-CoV-2 virus and protective measures against COVID-19 transmission in dental facilities. We complied and provided guidance and standard protocols recommended by credible national and international organizations. This review will serve as an aid to navigating through this unprecedented time with ease. Here we reviewed the available literature recommended for the best current practices that must be taken for a dental office to function safely and successfully.Community coalitions have been recognised as an important vehicle to advance health promotion and address relevant local health issues in communities, yet little is known about their effectiveness in the field of suicide prevention. The Wesley Lifeforce Suicide Prevention Networks program consists of a national cohort of local community-led suicide prevention networks. This study drew on a nationally representative survey and the perspectives of coordinators of these networks to identify the key factors underpinning positive perceived network member and community outcomes. Survey data were analysed through descriptive statistics and linear regression analyses. Networks typically reported better outcomes for network members and communities if they had been in existence for longer, had a focus on the general community, and had conducted more network meetings and internal processes, as well as specific community-focused activities. Study findings strengthen the evidence base for effective network operations and lend further support to the merit of community coalitions in the field of suicide prevention, with implications for similar initiatives, policymakers, and wider sector stakeholders seeking to address suicide prevention issues at a local community level.Cystic fibrosis (CF) airway disease is characterized by chronic microbial infections and infiltration of inflammatory polymorphonuclear (PMN) granulocytes. Staphylococcus aureus (S. aureus) is a major lung pathogen in CF that persists despite the presence of PMNs and has been associated with CF lung function decline. While PMNs represent the main mechanism of the immune system to kill S. aureus, it remains largely unknown why PMNs fail to eliminate S. aureus in CF. The goal of this study was to observe how the CF airway environment affects S. aureus killing by PMNs. PMNs were isolated from the blood of healthy volunteers and CF patients. Clinical isolates of S. aureus were obtained from the airways of CF patients. The results show that PMNs from healthy volunteers were able to kill all CF isolates and laboratory strains of S. aureus tested in vitro. The extent of killing varied among strains. When PMNs were pretreated with supernatants of CF sputum, S. aureus killing was significantly inhibited suggesting that the CF airway environment compromises PMN antibacterial functions. CF blood PMNs were capable of killing S. aureus. Although bacterial killing was inhibited with CF sputum, PMN binding and phagocytosis of S. aureus was not diminished. The S. aureus-induced respiratory burst and neutrophil extracellular trap release from PMNs also remained uninhibited by CF sputum. In summary, our data demonstrate that the CF airway environment limits killing of S. aureus by PMNs and provides a new in vitro experimental model to study this phenomenon and its mechanism.Dissolved organic matter (DOM) greatly influences the transformation of nutrients and pollutants in the environment. To investigate the effects of pyrolysis temperatures on the composition and evolution of pyroligneous acid (PA)-derived DOM, DOM solutions extracted from a series of PA derived from eucalyptus at five pyrolysis temperature ranges (240-420 °C) were analysed with Fourier transform infrared spectroscopy, gas chromatography-mass spectroscopy, and fluorescence spectroscopy. Results showed that the dissolved organic carbon content sharply increased (p 370 °C). The results of two-dimensional correlation spectroscopic analysis suggested that with increasing pyrolysis temperatures, the humic-acid-like substances became more sensitive than other fluorescent components. This study provides valuable information on the characteristic evolution of PA-derived DOM.(1) Background The aim of this study was to develop a prediction model for assessing individual mPC risk in patients with pT4 colon cancer. Methods A total of 2003 patients with pT4 colon cancer undergoing R0 resection were categorized into the training or testing set. Based on the training set, 2044 Cox prediction models were developed. Next, models with the maximal C-index and minimal prediction error were selected. The final model was then validated based on the testing set using a time-dependent area under the curve and Brier score, and a scoring system was developed. Patients were stratified into the high- or low-risk group by their risk score, with the cut-off points determined by a classification and regression tree (CART). (2) Results The five candidate predictors were tumor location, preoperative carcinoembryonic antigen value, histologic type, T stage and nodal stage. Based on the CART, patients were categorized into the low-risk or high-risk groups. The model has high predictive accuracy (prediction error ≤5%) and good discrimination ability (area under the curve >0.7). (3) Conclusions The prediction model quantifies individual risk and is feasible for selecting patients with pT4 colon cancer who are at high risk of developing mPC.

The calipered kinematically-aligned (KA) total knee arthroplasty (TKA) strives to restore the patient's individual pre-arthritic (i.e., native) posterior tibial slope when retaining the posterior cruciate ligament (PCL). Deviations from the patient's individual pre-arthritic posterior slope tighten and slacken the PCL in flexion that drives tibial rotation, and such a change might compromise passive internal tibial rotation and coupled patellofemoral kinematics.

Twenty-one patients were treated with a calipered KA TKA and a PCL retaining implant with a medial ball-in-socket and a lateral flat articular insert conformity that mimics the native (i.e., healthy) knee. The slope of the tibial resection was set parallel to the medial joint line by adjusting the plane of an angel wing inserted in the tibial guide. Three trial inserts that matched and deviated 2°> and 2°< from the patient's pre-arthritic slope were 3D printed with goniometric markings. The goniometer measured the orientation of the tibia (i5-18° range reported for the native knee from extension to 90° flexion.Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions-motility, invasion and migration capabilities as well as resistance to apoptotic death-has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.Obesity has been associated with several alterations that could limit physical activity (PA) practice. In pediatrics, some studies have highlighted the importance of enjoyment as a motivation to begin and maintain adherence in PA. Since self-reported physical (SRPF) fitness was related to motivation, the aim of this study was to investigate the existence of differences between SRPF in children with obesity (OB) compared to normal weight (NW). The International Fitness Enjoyment Scale (IFIS) questionnaire was administered to 200 OB and 200 NW children. In all the subjects, height, weight, and BMI and in OB children adiposity indexes including waist circumference (WC), body shape index (ABSI), triponderal mass index (TMI), and fat mass were measured. NW group showed higher IFIS item scores than the OB group (p less then 0.01), except in muscular strength. In OB, the anthropometric outcomes were inversely correlated to SRPF outcome except for muscular strength. OB children reported a lower perception of fitness that could limit participation in PA/exercise programs. The evaluation of anthropometric patterns may be useful to prescribe a tailored exercise program considering individual better self-perception outcomes to obtain an optimal PA adherence.

The usefulness of Lung Ultrasound (LUS) for the diagnosis of interstitial syndrome caused by COVID-19 has been broadly described. The aim of this study was to evaluate if LUS may predict the complications (hospital admission) of COVID-19 pneumonia in primary care patients.

This observational study collects data from a cohort of 279 patients with clinical symptoms of COVID-19 pneumonia who attended the Balaguer Primary Health Care Area between 16 March 2020 and 30 September 2020. We collected the results of LUS scans reported by one general practitioner. We created a database and analysed the absolute and relative frequencies of LUS findings and their association with hospital admission. We found that different LUS patterns (diffuse, attenuated diffuse, and predominantly unilateral) were risk factors for hospital admission (

< 0.05). Additionally, an evolutionary pattern during the acute phase represented a risk factor (

= 0.0019). On the contrary, a normal ultrasound pattern was a protective factor (

= 0.0037). Finally, the presence of focal interstitial pattern was not associated with hospital admission (

= 0.4918).

The lung ultrasound was useful to predict complications in COVID-19 pneumonia and to diagnose other lung diseases such as cancer, tuberculosis, pulmonary embolism, chronic interstitial pneumopathy, pleuropericarditis, pneumonia or heart failure.

The lung ultrasound was useful to predict complications in COVID-19 pneumonia and to diagnose other lung diseases such as cancer, tuberculosis, pulmonary embolism, chronic interstitial pneumopathy, pleuropericarditis, pneumonia or heart failure.In 2015, the Dietary Guidelines for Americans (DGA) eliminated the historical upper limit of 300 mg of dietary cholesterol/day and shifted to a more general recommendation that cholesterol intake should be limited. The primary aim of this secondary analysis of the Diet Intervention Examining the Factors Interacting With Treatment Success (DIETFITS) weight loss diet trial was to evaluate the associations between 12-month changes in dietary cholesterol intake (mg/day) and changes in plasma lipids, particularly low-density lipoprotein (LDL) cholesterol for those following a healthy low-carbohydrate (HLC) diet. Secondary aims included examining high-density lipoprotein (HDL) cholesterol and triglycerides and changes in refined grains and added sugars. The DIETFITS trial randomized 609 healthy adults aged 18-50 years with body mass indices of 28-40 kg/m2 to an HLC or healthy low-fat (HLF) diet for 12 months. Linear regressions examined the association between 12-month change in dietary cholesterol intake and plasma lipids in 208 HLC participants with complete diet and lipid data, adjusting for potential confounding variables. Baseline dietary cholesterol intake was 322 ± 173 (mean ± SD). At 12 months, participants consumed an average of 460 ± 227 mg/day of dietary cholesterol; 76% consumed over the previously recommended limit of 300 mg/day. Twelve-month changes in cholesterol intake were not significantly associated with 12-month changes in LDL-C, HDL-C, or triglycerides. Diet recall data suggested participants' increase in dietary cholesterol was partly due to replacing refined grains and sugars with eggs. An increase in daily dietary cholesterol intake to levels substantially above the previous 300 mg upper limit was not associated with a negative impact on lipid profiles in the setting of a healthy, low-carbohydrate weight loss diet.Trypanosomatids of the subfamily Strigomonadinae bear permanent intracellular bacterial symbionts acquired by the common ancestor of these flagellates. However, the cospeciation pattern inherent to such relationships was revealed to be broken upon the description of Angomonas ambiguus, which is sister to A. desouzai, but bears an endosymbiont genetically close to that of A. deanei. Based on phylogenetic inferences, it was proposed that the bacterium from A. deanei had been horizontally transferred to A. ambiguus. Here, we sequenced the bacterial genomes from two A. ambiguus isolates, including a new one from Papua New Guinea, and compared them with the published genome of the A. deanei endosymbiont, revealing differences below the interspecific level. Our phylogenetic analyses confirmed that the endosymbionts of A. ambiguus were obtained from A. deanei and, in addition, demonstrated that this occurred more than once. We propose that coinfection of the same blowfly host and the phylogenetic relatedness of the trypanosomatids facilitate such transitions, whereas the drastic difference in the occurrence of the two trypanosomatid species determines the observed direction of this process. This phenomenon is analogous to organelle (mitochondrion/plastid) capture described in multicellular organisms and, thereafter, we name it endosymbiont capture.This short review summarizes the literature on composite anion exchange membranes (AEM) containing an organo-silica network formed by sol-gel chemistry. The article covers AEM for diffusion dialysis (DD), for electrochemical energy technologies including fuel cells and redox flow batteries, and for electrodialysis. By applying a vast variety of organically modified silica compounds (ORMOSIL), many composite AEM reported in the last 15 years are based on poly (vinylalcohol) (PVA) or poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) used as polymer matrix. The most stringent requirements are high permselectivity and water flux for DD membranes, while high ionic conductivity is essential for electrochemical applications. Furthermore, the alkaline stability of AEM for fuel cell applications remains a challenging problem that is not yet solved. Possible future topics of investigation on composite AEM containing an organo-silica network are also discussed.IgA nephropathy remains the most common primary glomerular disease worldwide. It affects children and adults of all ages, and is a leading cause of end-stage kidney disease, making it a considerable public health issue in many countries. Despite being initially described over 50 years ago, there are still no disease specific treatments, with current management for most patients being focused on lifestyle measures and renin-angiotensin-aldosterone system blockade. However, significant advances in the understanding of its pathogenesis have been made particularly over the past decade, leading to great interest in developing new therapeutic strategies, and a significant rise in the number of interventional clinical trials being performed. In this review, we will summarise the current state of management of IgAN, and then describe major areas of interest where new therapies are at their most advanced stages of development, that include the gut mucosal immune system, B cell signalling, the complement system and non-immune modulators. Finally, we describe clinical trials that are taking place in each area and explore future directions for translational research.Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. MS is characterized by infiltrations of leukocytes such as T and B lymphocytes and macrophages. Macrophages have been identified as major effectors of inflammation and demyelination in both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the activation and heterogeneity of macrophages in MS has been poorly investigated. Thus, in this study, we evaluated M1 and M2 macrophages immunophenotype from EAE and control mice by analyzing over 30 surface and intracellular markers through polychromatic flow cytometry, qRT-PCR, and ELISA assay. We showed that M1 macrophages possessed a higher proinflammatory profile in EAE compared to control mice, since they expressed higher levels of activation/co-stimulatory markers (iNOS, CD40, and CD80) and cytokines/chemokines (IL-6, IL-12, CCL2, and CXCL10), whereas M2 lost their M2-like phenotype by showing a decreased expression of their signature markers CD206 and CCL22, as well as a concomitant upregulation of several M1 makers. Furthermore, immunization of M1 and M2 macrophages with MOG35-55 led to a significant hyperactivation of M1 and a concomitant shift of anti-inflammatory M2 to pro-inflammatory M1 macrophages. Overall, we provide evidence for a phenotypic alteration of M1/M2 balance during MS, which can be of crucial importance not only for a better understanding of the immunopathology of this neurodegenerative disease but also to potentially develop new macrophage-centered therapeutic strategies.Although refrigeration and modified-atmosphere packaging (MAP) allow for an extended shelf life of cooked charcuterie products, they are still susceptible to bacterial spoilage. To obtain better insights into factors that govern product deterioration, ample information is needed on the associated microbiota. In this study, sliced MAP cooked ham and cooked chicken samples were subjected to culture-dependent and culture-independent microbial analysis. In total, 683 bacterial isolates were obtained and identified from 60 samples collected throughout the storage period. For both charcuterie types, lactic acid bacteria (LAB) constituted the most abundant microbial group. In cooked ham, Brochothrix thermosphacta was highly abundant at the beginning of the shelf-life period, but was later overtaken by Leuconostoc carnosum and Lactococcus piscium. For cooked chicken products, Latilactobacillus sakei was most abundant throughout the entire period. Additionally, 13 cooked ham and 16 cooked chicken samples were analyzed using metabarcoding. Findings obtained with this method were generally in accordance with the results from the culture-dependent approach, yet they additionally demonstrated the presence of Photobacterium at the beginning of the shelf-life period in both product types. The results indicated that combining culture-dependent methods with metabarcoding can give complementary insights into the evolution of microorganisms in perishable foods.The aim of this study was to assess the one year clinical performance of a new application method, the Fast-Modelling Bulk Technique (FMBT), in comparison to the Composite-Up Layering Technique (CULT) in posterior cavities. Thirty patients with two class I cavities on permanent human molars were enrolled in the present study. A total of sixty class I cavities were prepared and randomly divided according to the restoration technique used 30 cavities restored by incremental layering technique and modelling of the last layer with Composite-Up Technique (CUT) using the composite Filtek Z250XT (3M ESPE; St. Paul, MN, USA) and the other 30 restored by Bulk Filling technique and modelling of the last layer by Fast-Modelling Technique (FMT) using the composite Filtek Bulk Fill Posterior Restorative (3M ESPE; St. Paul, MN, USA). Restorations were evaluated for up to one year by two observers according to Federation Dentaire Internationale (FDI) criteria, through clinical and radiological exams. Exact Fisher tests were used for statistical analysis. (p ≤ 0.05). From a biological perspective, at baseline, teeth restored with both techniques did not reveal any postoperative sensitivity. However, with time, FMBT showed less postoperative sensitivity and therefore more desirable results than CULT with a nonsignificant difference after one year (p > 0.05). Concerning secondary caries, fracture of the material, and marginal adaptation, no significant difference was noted between both techniques (p > 0.05). Regarding marginal staining, CULT resulted in more staining with a significant difference, as compared to FMBT (p less then 0.05). Upon radiological examination, FMBT showed a good marginal fit during the first year, whereas CULT showed small empty voids from baseline with a nonsignificant difference (p = 1.00). After one year of clinical function, both techniques showed promising results. The present study indicates that the new FMBT could have a positive effect on the marginal staining of resin composite.The diagnosis of Hirschsprung's disease (HSCR) relies on history, physical examination, and investigations. Some of investigation modalities could not be done in primary hospital. This study was aimed to develop the clinical score model for diagnosing and early referrals of HSCR, especially in areas where investigations were not available. Overall 483 consecutive suspected HSCR patients who were under 15 years old from January 2006 to December 2020 were included in this study, with 207 (42.86%) patients diagnosed with HSCR and 276 (51.14%) patients in the non-HSCR group. Five clinical parameters were included in the prediction model. The AuROC of clinical parameters, which included having an age younger than one month, male gender, the term infant, history of delayed meconium passage, and history of enterocolitis, was 72%. The prediction score ranged from 0-7, with a score 0-3 meaning a low risk to be HSCR (LHR+ = 0.37). We concluded that patients with suspected HSCR who had clinical score 4-7 had a high probability to be HSCR and, thus, it was suggested that these patients have an early referral for further investigations, which were contrast enema and rectal suction biopsy. In the case of a low probability of HSCR, clinical observation is still warranted. This clinical scoring system can be used as a screening tool to prevent delay diagnosis and complications.Hypoxia, a characteristic feature of solid tumors, is associated with the malignant phenotype and therapy resistance of cancers. Hypoxia-inducible factor 1 (HIF-1), which is responsible for the metazoan adaptive response to hypoxia, has been recognized as a rational target for cancer therapy due to its critical functions in hypoxic regions. In order to efficiently inhibit its activity, extensive efforts have been made to elucidate the molecular mechanism underlying the activation of HIF-1. Here, we provide an overview of relevant research, particularly on a series of HIF-1 activators identified so far and the development of anticancer drugs targeting them.The purpose of this case-cohort study was to investigate whether the frequency and computed tomography (CT) features of pulmonary nodules posed a risk for the future development of lung cancer (LC) at a different location. Patients scanned between 2004 and 2012 at two Dutch academic hospitals were cross-linked with the Dutch Cancer Registry. All patients who were diagnosed with LC by 2014 and a random selection of LC-free patients were considered. LC patients who were determined to be LC-free at the time of the scan and all LC-free patients with an adequate scan were included. The nodule count and types (solid, part-solid, ground-glass, and perifissural) were recorded per scan. Age, sex, and other CT measures were included to control for confounding factors. The cohort included 163 LC patients and 1178 LC-free patients. Cox regression revealed that the number of ground-glass nodules and part-solid nodules present were positively correlated to future LC risk. The area under the receiver operating curve of parsimonious models with and without nodule type information were 0.827 and 0.802, respectively. The presence of subsolid nodules in a clinical setting may be a risk factor for future LC development in another pulmonary location in a dose-dependent manner. Replication of the results in screening cohorts is required for maximum utility of these findings.Many neonates undergoing whole body hypothermia (WBH) following moderate to severe perinatal asphyxia may also suffer from renal impairment. While recent data suggest WBH-related reno-protection, differences in serum creatinine (Scr) patterns to reference patterns were not yet reported. We therefore aimed to document Scr trends and patterns in asphyxiated neonates undergoing WBH and compared these to centiles from a reference Scr data set of non-asphyxiated (near)term neonates. Using a systematic review strategy, reports on Scr trends (mean ± SD, median or interquartile range) were collected (day 1-7) in WBH cohorts and compared to centiles of an earlier reported reference cohort of non-asphyxia cases. Based on 13 papers on asphyxia + WBH cases, a pattern of postnatal Scr trends in asphyxia + WBH cases was constructed. Compared to the reference 50th centile Scr values, mean or median Scr values at birth and up to 48 h were higher in asphyxia + WBH cases with a subsequent uncertain declining trend towards, at best, high or high-normal creatinine values afterwards. Such patterns are valuable for anticipating average changes in renal drug clearance but do not yet cover the relevant inter-patient variability observed in WBH cases, as this needs pooling of individual Screa profiles, preferably beyond the first week of life.The increase in antibacterial resistance is a serious challenge for both the health and defence sectors and there is a need for both novel antibacterial targets and antibacterial strategies. RNA degradation and ribonucleases, such as the essential endoribonuclease RNase E, encoded by the rne gene, are emerging as potential antibacterial targets while antisense oligonucleotides may provide alternative antibacterial strategies. As rne mRNA has not been previously targeted using an antisense approach, we decided to explore using antisense oligonucleotides to target the translation initiation region of the Escherichia coli rne mRNA. Antisense oligonucleotides were rationally designed and were synthesised as locked nucleic acid (LNA) gapmers to enable inhibition of rne mRNA translation through two mechanisms. Either LNA gapmer binding could sterically block translation and/or LNA gapmer binding could facilitate RNase H-mediated cleavage of the rne mRNA. This may prove to be an advantage over the majority of previous antibacterial antisense oligonucleotide approaches which used oligonucleotide chemistries that restrict the mode-of-action of the antisense oligonucleotide to steric blocking of translation. Using an electrophoretic mobility shift assay, we demonstrate that the LNA gapmers bind to the translation initiation region of E. coli rne mRNA. We then use a cell-free transcription translation reporter assay to show that this binding is capable of inhibiting translation. Finally, in an in vitro RNase H cleavage assay, the LNA gapmers facilitate RNase H-mediated mRNA cleavage. Although the challenges of antisense oligonucleotide delivery remain to be addressed, overall, this work lays the foundations for the development of a novel antibacterial strategy targeting rne mRNA with antisense oligonucleotides.In January 2014, over 10,000 gallons of methyl-cyclohexane methanol (MCHM) leaked into the Elk River in West Virginia, in a chemical spill incident that contaminated a large portion of the state's water supply and left over 300,000 residents without clean water for many days and weeks. Initial efforts to remove MCHM at the treatment plant centered on the use of granulated activated carbon (GAC), which removed some of the chemical from the water, but MCHM levels were not lowered to a "non-detect" status until well after the chemical plume had moved downstream of the intake. Months later, MCHM was again detected at the outflow (but not the inflow) at the water treatment facility, necessitating the full and costly replacement of all GAC in the facility. The purpose of this study is to investigate the hypothesis that preferential absorbance of one of the two MCHM isomers, coupled with seasonal variations in water temperature, explain this contrary observation. Calculated intermolecular potentials between ovalene erfacial chemistry investigations.(1) Background An improved understanding of soccer players' match-related physical performance and recovery may help conditioning programs and re-warm up strategies to increase team performance during official competitions. Therefore, the aim of this study was to analyze the acute effects of 45 min of official competition (first half in matches) on physical performance variables in U-16 youth soccer players. (2) Methods 20 male soccer players (age 14.4 ± 0.5 years; height 1.70 ± 0.05 cm; body mass 65.1 ± 11.6 kg) were recruited to participate in this study. Data was collected from five official matches. Participants performed the assessments in two stages of each match after the pre-match warm-up and after the first half. Tests included rate of perceived exertion (RPE), 30-m sprint and countermovement (CMJ). (3) Results Statistically significant differences were found (p less then 0.001) when the measurements prior to the game were compared with those recorded after half time across all variables. Effect sizes (ES) were very large for RPE (ES = 1.82), moderate for 30-m sprint times (ES = 0.64) and small for CMJ (ES = -0.25). (4) Conclusions After 45 min of official competition, our results suggest that U-16 soccer players demonstrated a reduction in sprint and jump performance, in addition to a higher RPE. Hence, this information could be useful when designing re-warming strategies that can be performed before the second half.There is limited knowledge about how a settings-based approach can be best applied in a sports club setting. This qualitative exploratory study examined whether and how sporting programs focusing on individual behavior change (i.e., increasing physical activity levels of inactive people) and implemented on the micro-level of the sports club, can be a first step towards a settings-based approach (i.e., inclusion of the meso- and macro-level of the sports club). In addition, this study explored factors that influenced the inclusion of the meso- and macro-level of the sports club. Telephone interviews were conducted with representatives of sixteen sports clubs about program activities on all levels of the sports club. Thematic analyses were performed to explore stimulating and hindering factors. After multiple years, six sports clubs also had program activities on the meso-level and twelve sports clubs had activities on the macro-level. Program activities differed per level within a sports club and on the same level between sports clubs. Cultural and social factors influenced macro-level activities, while predominantly economic factors influenced meso-level activities. Based on these factors, sports clubs could develop, prioritize, and choose strategies that support them in developing a settings-based approach when increasing physical activity levels of inactive citizens.Three muscadine grape genotypes (Muscadinia rotundifolia (Michx.) Small) were evaluated for their metabolite profiling and antioxidant activities at different berry developmental stages. A total of 329 metabolites were identified using UPLC-TOF-MS analysis (Ultimate 3000LC combined with Q Exactive MS and screened with ESI-MS) in muscadine genotypes throughout different developmental stages. Untargeted metabolomics study revealed the dominant chemical groups as amino acids, organic acids, sugars, and phenolics. Principal component analysis indicated that developmental stages rather than genotypes could explain the variations among the metabolic profiles of muscadine berries. For instance, catechin, epicatechin-3-gallate, and gallic acid were more accumulated in ripening seeds (RIP-S). However, tartaric acid and malonic acid were more abundant during the fruit-set (FS) stage, and malic acid was more abundant in the veraison (V) stage. The variable importance in the projection (VIP > 0.5) in partial least-squares-discriminant analysis described 27 biomarker compounds, representing the muscadine berry metabolome profiles. A heatmap of Pearson's correlation analysis between the 27 biomarker compounds and antioxidant activities was able to identify nine antioxidant determinants; among them, gallic acid, 4-acetamidobutanoic acid, trehalose, catechine, and epicatechin-3-gallate displayed the highest correlations with different types of antioxidant activities. For instance, DPPH and FRAP conferred a similar antioxidant activity pattern and were highly correlated with gallic acid and 4-acetamidobutanoic acid. This comprehensive study of the metabolomics and antioxidant activities of muscadine berries at different developmental stages is of great reference value for the plant, food, pharmaceutical, and nutraceutical sectors.The microwave ablation technique to destroy cancer tissues in liver is practiced clinically and is the subject of ongoing research, e.g., ablation monitoring. For studies, liver tissue from cattle or pigs is often used as a substitute material. In this work, sweet potato is presented as an alternative material for microwave ablation experiments in liver due to similar material properties. Sweet potatoes as a substitute for liver have the advantages of better handling, easy procurement and stable material properties over time for microwave ablation experiments. The dielectric constant and electrical conductivity of sweet potato are characterized for temperature variation with the help of high-temperature dielectric probe. Furthermore, a test setup is presented for microwave ablation experiments in which a bowtie slot antenna matched to sweet potato is placed on its surface to directly receive the microwave power from a self-developed microwave applicator inserted into a sweet potato 4 cm below the surface antended to multiple array antennas for microwave ablation monitoring.(1) Background Attitudes toward menopause are believed to play a potential role in the experience of menopause, including its perceived severity. However, the studies available on the perspectives of women living with human immunodeficiency virus (HIV) on menopause in Cambodia are very limited. This study aimed to evaluate the attitudes toward menopause of Cambodian women living with HIV. (2) Methods A cross-sectional study was conducted among 189 women using a questionnaire titled Attitude toward Menopause Scale and socio-demographics. (3) Results The study analysis showed that the participants had slightly negative attitudes toward menopause with the mean attitude score of 86.81 ± 10.79 (Range 35-140). Postmenopausal women displayed more positive attitudes than premenopausal women. Older age, higher education, and a non-drinking habit were independently associated with a positive attitude toward menopause. (4) Conclusions The results suggest the need for a multidisciplinary team of health care experts that would address the special needs of this population marked by the menopausal transition.Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.Background Swabbing of implants removed from potentially infected sites represents a time saving and ubiquitously applicable alternative to sonication approaches. The latter bears an elevated risk of processing related contaminations due to the high number of handling steps. Since biofilms are usually invisible to the naked eye, adequate swabbing relies on the chance of hitting the colonized area on the implant. A targeted directed swabbing approach could overcome this detriment. Method Three dyes were tested at different concentrations for their toxicity on biofilm-associated cells of S. epidermidis, the species most frequently identified as a causative agent of implant-associated infections. Results Malachite green (0.2%) delivered the highest bacterial recovery rates combined with the best results in biofilm visualization. Its suitability for diagnostic approaches was demonstrated for smooth and rough implant surfaces. Biofilm-covered areas were successfully visualized. Conclusion Subsequent targeted swab-sampling resulted in a significantly increased bacterial recovery rate compared to a dye-free "random swabbing" diagnostic approach.The radiation response of Al2O3 on silicon substrate under gamma-rays is studied in this article. The atomic layer deposited Al2O3 based metal-oxide-semiconductor structures were irradiated under gamma-ray with the total dose of 1.2 Mrad(Si)/2.5 Mrad(Si)/4 Mrad(Si). The generation, transportation and trapping characteristics of radiation induced charges were studied by using electronic, physical and chemical methods. Firstly, the radiation induced trapped charge density in Al2O3 is up to 1012 cm-2, with the effective trapping efficiency of 7-20% under irradiation. Secondly, the leakage current through Al2O3 changes little with the increase of radiation total dose. Thirdly, oxygen vacancy in Al2O3 and O dangling bonds and Al-Si metallic bonds at Al2O3/Si interface are dominant radiation induced defects in Al2O3/Si system, and the valence band offset between Al2O3 and Si is found to decrease after irradiation. From the results we can see that Al2O3 is radiation resistant from the aspect of leakage current and crystallization characteristics, but the radiation induced charge trapping and new defects in Al2O3/Si structure cannot be ignored. This paper provides a reference for the space application of Al2O3 based MOS devices.Influenza A viruses (IAVs) initiate infection by attaching Hemagglutinin (HA) on the viral envelope to sialic acid (SA) receptors on the cell surface. Importantly, HA of human IAVs has a higher affinity for α-2,6-linked SA receptors, and avian strains prefer α-2,3-linked SA receptors, whereas swine strains have a strong affinity for both SA receptors. Host gene CMAS and ST3GAL4 were found to be essential for IAV attachment and entry. Loss of CMAS and ST3GAL4 hindered the synthesis of sialic acid receptors, which in turn prevented the adsorption of IAV. Further, the knockout of CMAS had an effect on the adsorption of swine, avian and human IAVs. However, ST3GAL4 knockout prevented the adsorption of swine and avian IAV and the impact on avian IAV was more distinct, whereas it had no effect on the adsorption of human IAV. Collectively, our findings demonstrate that knocking out CMAS and ST3GAL4 negatively regulated IAV replication by inhibiting the synthesis of SA receptors, which also provides new insights into the production of gene-edited animals in the future.

Autoři článku: Nilssonstrand9965 (Klemmensen Christoffersen)