Nilssonadcock3206

Z Iurium Wiki

08 (range 43-48) and a mean AOFAS score of 92.33 (range 78-100) at final follow-up. All twelve patients reported their outcome as being excellent. No malalignment was noted clinically, however, three patients had a noticeable increase in the gap between the hallux and second toe when compared to the contralateral side. Range of motion at the MTPJ was preserved with a mean dorsiflexion of 80.83° (range 70-90°) and a mean plantarflexion was 25.83° (range 0-30°). None of the patients experienced any pain, discomfort or irritation related to the plantar scar. One patient developed neuroma like symptoms in the first web space. CONCLUSION Lateral hallucal sesamoidectomy via a plantar approach is an effective and reliable treatment option as demonstrated by the high levels of patient satisfaction, preservation of function, excellent PROM scores and limited complications in this study. LEVEL OF EVIDENCE Level 4. The effects of four conductive nanomaterials (nano-carbon powder, nano-Al2O3, nano-ZnO, nano-CuO) on sludge anaerobic digestion (AD) performance and microbial community were investigated through a 36-day fermentation experiment. Results showed that biogas production enhanced by 16.9% and 23.4% with nano-carbon powder and nano-Al2O3 added but decreased by 90.2% and 17.3% with nano-ZnO and nano-CuO. Total solids (TS) removal efficiency was increased by 38.73% and 27.11% with nano-carbon powder and nano-Al2O3 added but decreased by 70.67% and 43.70% with nano-ZnO and nano-CuO. Kinetic analysis indicated four conductive nanomaterials could shorten the lag phase of AD sludge with an average rate of 51.75%. 16S rRNA amplicon sequencing results demonstrated microbes such as Syntrophomonas and Methanosaeta were enriched in nano-carbon powder and nano-Al2O3 reactors. However, microbial community diversity and richness were both inhibited by adding nano-ZnO and nano-CuO. Redundancy analysis (RDA) revealed that genera belong to Firmicutes and Chloroflexi could conduce to methanogenesis process. In this work, the pyrolysis behavior of lignite, Chinese herb residues (CHR) and their blends were explored by thermogravimetric analysis. The co-pyrolysis improved the pyrolysis characteristic of lignite, leading to an increment of index D. Analysis results showed that 30%-50% of CHR add ratio was the appropriate choice for co-pyrolysis with lignite. It was clarified that synergetic effects between lignite with CHR occurred during the co-pyrolysis treatment. And the promoting effects were dominated at 240 °C to 310 °C, while it turned to inhibiting effects at 315 °C to 355 °C. The pyrolysis kinetic evolution was adapted by a new general distributed activation energy model with four pseudo-components. The simulation results demonstrated an excellent match with the adjusted coefficients Radj2 over 99.97%. In addition, G-DAEM further considered A-E kinetic compensatory effect. The outcomes enriched the applicability of this model in thermal process of other fuels. This study aimed to evaluate the effects and explore the mechanisms of polyethylene (PE), polyurethane sponge (PUS), and granule activated carbon (GAC) on short-chain fatty acids (SCFAs) production from sludge anaerobic fermentation. Results showed that no matter the biocarrier type, addition of biocarriers increased the diversity of SCFAs. In contrast with GAC, addition of PE and PUS considerably facilitated the accumulation of the total SCFAs. Suspended PE and PUS might have stronger frictions with sludge particles which resulted in a better sludge disintegration. Other factors that contributed to the enhancement of PE and PUS include higher hydrolytic and acidogenic enzymes activities, lower methanogenic enzyme activity, more Firmicutes and less Proteobacteria. Consistent with enzymatic and microbial results, the PE and the PUS tests also showed greater abundance in all metabolic functions predicted with PICRUSt. This study provides a novel strategy for sludge anaerobic fermentation by using traditional wastewater biocarriers. This study studied the change of functionalities in the biochar formed in pyrolysis of poplar wood in a wide range of temperature. The in situ Diffuse Reflectance Infrared Fourier transform spectroscopy characterization indicated that aldehydes and ketones functionalities formation initiated at 100 °C, dominated at 300 to 500 °C. Carboxyl group was less stable than carbonyls. Cellulose crystal in poplar decomposed slightly at 300 °C and significantly at 350 °C. The temperature from 250 to 350 °C significantly affected biochar yields, while the drastic fusion of the ring structures in biochar occurred from 550 to 650 °C, making biochar more aliphatic while less more aromatic. High pyrolysis temperature also created more defective structures in the biochar and favored the absorption of the CO2 generated during the pyrolysis. The results provide the reference information for understanding the structural configuration and evolution of the functionalities during in pyrolysis of poplar biomass. Free nitrous acid based pretreatments are novel and effective chemical strategies for enhancing waste activated sludge solubilization. In this study, the synergetic effects of the combined free nitrous acid and electrochemical pretreatment on sludge solubilization and subsequent methane productivity were evaluated. The results indicated that pretreatment with 10 V plus 14.17 mg N/L substantially enhanced sludge solubilization, with the highest soluble chemical oxygen demand concentration of 3296.7 mg/L, 25.6-time higher than that without pretreatment (128.9 mg/L). Due to the potential toxicity of NO2- and NO3- to microorganisms and its bioprocesses, the methane production of sludge pretreated by free nitrous acid was significantly deteriorated. The maximum methane yield (152.0 ± 9.6 mL/g-VSadded) was observed at 10 V pretreatment alone, only 1.7% higher than that of the control (149.4 ± 1.6 mL/g-VSadded). Combined pretreatment indeed enhances the sludge solubilization and hydrolysis, but does not always induce an improved anaerobic digestion efficiency. Semi-continuous experiments were conducted to compare the performances and energy efficiencies of two advanced anaerobic digestions (AAD) of sewage sludge with high-temperature thermal pretreatment (HTTP, 160 ± 1 °C and 0.55 MPa for 30 min) and low-temperature thermal-alkaline pretreatment (LTTAP, 60 ± 1 °C and pH 12.0 ± 0.1 for 30 min), which had similar sludge disintegration degree (9.44-9.48%). At the steady period of a SRT 20 d, the two AAD had similar methane production (150.22 ± 9.55 ml/L/d and 151.02 ± 12.56 ml/L/d) and organic matter removals (22.54 ± 2.84% and 23.15 ± 2.46% for volatile solids-VS). The results of high-throughput sequencing showed that the methanogenic pathways of the two AAD were strictly hydrogenotrophic (AAD with HTTP) and hydrogenotrophic/acetoclastic methanogenesis (AAD with LTTAP), respectively. The energy balance analysis suggested that the AAD with LTTAP was superior to that with HTTP because the former had a higher energy efficiency (1.610) than the latter (1.358). In this study, a novel Aureobasidium pullulans GXL-1 strain without melanin secretion was isolated for efficient polymalic acid (PMA) production. The PMA produced by GXL-1 was characterized, and its molecular mass was determined to be 1.621 kDa by gel permeation chromatography. Liquefied corn starch was shown to replace glucose for PMA production by GXL-1 through simultaneous saccharification and fermentation. The PMA titer obtained from batch fermentation was up to 49.0 ± 1.6 g/L in a 10 L fermentor, and the PMA yield and productivity obtained from repeated-batch fermentation were up to 0.50 g/g and 0.34 g/L·h, respectively. Furthermore, process design and techno-economic analysis were performed at an annual output level of 5000 metric tons by SuperPro Designer. Results showed that the production cost of $2.046/kg and payback period of 6.9 years were achieved by repeated-batch fermentation; this provides an economically feasible strategy for industrial-scale production of PMA. Green microalga, Chlamydomonas sp. TRC-1 (C. TRC-1), isolated from the outlet of effluent treatment plant of textile dyeing mill, was investigated for its competence towards bioremediation. Algal biomass obtained after remediation (ABAR) was implied for bioelectricity and biofuel production. C. TRC-1 could completely decolorize the effluent in 7 days. Significant reduction in pollution-indicating parameters was observed. Chronoamperometric studies were carried out using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). Maximum current density, power and power density of 3.6 A m-2, 4.13 × 10-4 W and 1.83 W m-2, respectively were generated in ABAR. EIS studies showed a decrease in resistance of ABAR, supporting better electron transfer as compared to algal biomass before remediation (ABBR). Its candidature for biofuel production was assessed by estimating the total lipid content. Results revealed enhancement in lipid content from 46.85% (ABBR) to 79.1% (ABAR). Current study advocates versatile potential of isolated C. TRC-1 for bioremediation of wastewater, bioelectricity production and biofuel generation. R2R3-MYB transcription factors are important regulators of the growth and development of plants. Here, CmMYB8 a chrysanthemum gene encoding an R2R3-MYB transcription factor, was isolated and functionally characterized. The gene was transcribed throughout the plant, but most strongly in the stem. When CmMYB8 was over-expressed, a number of genes encoding components of lignin synthesis were down-regulated, and the plants' lignin content was reduced. The composition of the lignin in the transgenic plants was also altered, and its S/G ratio was reduced. A further consequence of the over-expression of CmMYB8 was to lessen the transcript abundance of key genes involved in flavonoid synthesis, resulting in a reduced accumulation of flavonoids. The indication is that the CmMYB8 protein participates in the negative regulation of both lignin and flavonoid synthesis. Rising atmospheric CO2 concentrations ([CO2]) together with water deficit can influence ecological interactions of trees through an array of chemically driven changes in plant leaves. In four drought stressed Pinus pinaster genotypes, grown under two levels of atmospheric [CO2] (ambient (aCO2) and enriched (eCO2)) the metabolome of adult and juvenile needles was analyzed to know if the metabolic responses to this environmental situation could be genotype-dependent and vary according to the stage of needle ontogeny. Drought had the highest incidence, followed by needle ontogeny, being lower the eCO2 effect. The eCO2 reduced, eliminated or countered the 50 (adult needles) - 44% (juvenile) of the drought-induced changes, suggesting that CO2-enriched plants could perceived less oxidative stress under drought, and proving that together, these two abiotic factors triggered a metabolic response different from that under single factors. Genotype drought tolerance and ontogenetic stage determined the level of metabolite accumulation and the plasticity to eCO2 under drought, which was mainly reflected in antioxidant levels and tree chemical defense. At re-watering, previously water stressed plants showed both, reduced C and N metabolism, and a "drought memory effect", favoring antioxidants and osmolyte storage. This effect showed variations regarding genotype drought-tolerance, needle ontogeny and [CO2], with remarkable contribution of terpenoids. Chemical defense and drought tolerance were somehow linked, increasing chemical defense during recovery in the most drought-sensitive individuals. The better adaptation of trees to drought under eCO2, as well as their ability to recover better from water stress, are essential for the survival of forest trees.

Autoři článku: Nilssonadcock3206 (Currie Tranberg)