Nikolajsenmacgregor8404

Z Iurium Wiki

Botryosphaeria dothidea is a pathogenic fungus that can cause apple ring rot, a destructive apple disease in China. There have been reports on its molecular pathogenesis, but the pathogenic substances still remain unknown. In the present study, instrument analysis including UPLC-high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance showed that B. read more dothidea fermentation broth contained (R)-(-)-mellein, a well-known fungal enantiomer of mellein. For further confirmation, a UPLC-MS/MS method for the determination of mellein was developed and validated. By this method, mellein was found to also exist in B. dothidea-infected apple fruits and branches with concentration ranges of 0.14-0.94 and 5.88-80.29 mg/kg, respectively. The concentration in fruits reached a peak at 48 h after pathogen inoculation, while a sustained concentration increase was achieved within 11 days for branches. Simultaneously, it was evident that there was a relation between disease spot expansion and mellein production kinetics in apple tissue. Phytotoxic bioassay showed that mellein could cause discoloration and death of apple leaves and browning in stems. Therefore, we confirmed that mellein was one of the pathogenic substances of B. dothidea. The present study provided additional data for the research on the pathogenesis of this pathogen.The structural asymmetry of two-dimensional (2D) Janus transition-metal dichalcogenides (TMDs) produces internal dipole moments that result in interesting electronic properties. These properties differ from the regular (symmetric) TMD structures that the Janus structures are derived from. In this study, we, first, examine adsorption and diffusion of a single Li atom on regular MX2 and Janus MXY (M = Mo, W; XY = S, Se, Te) TMD structures at various concentrations using first-principles calculations within density functional theory. Lithium adsorption energy and mobility differ on the top and bottom sides of each Janus material. The correlation between Li adsorption energy, charge transfer, and bond lengths at different coverage densities is carefully examined. To gain more physical insight and prepare for future investigations into regular TMD and Janus materials, we applied a supervised machine learning (ML) model that uses clusterwise linear regression to predict the adsorption energies of Li on top of 2D TMayer Li adsorption was hindered due to negative open-circuit voltage. Bilayer Janus structures are better suited for battery applications due to less volumetric expansion/contraction during the discharge/charge process and having higher storage capacity. Janus monolayers undergo a transition from semiconducting to metallic upon adsorption of a single Li ion, which would improve anode conductivity. The results imply that the examined Janus structures should perform well as electrodes in Li-ion batteries.The discovery of a potential ligand-targeting G protein-coupled receptor 17 (GPR17) is important for developing chemotherapeutic agents against glioblastoma multiforme (GBM). We used the integration of ligand- and structure-based cheminformatics and experimental approaches for identifying the potential GPR17 ligand for GBM treatment. Here, we identified a novel indoline-derived phenolic Mannich base as an activator of GPR17 using molecular docking of over 6000 indoline derivatives. One of the top 10 hit molecules, CHBC, with a glide score of -8.390 was synthesized through a multicomponent Petasis borono-Mannich reaction. The CHBC-GPR17 interaction leads to a rapid decrease of cAMP and Ca2+. CHBC exhibits the cytotoxicity effect on GBM cells in a dose-dependent manner with an IC50 of 85 μM, whereas the known agonist MDL29,951 showed a negligible effect. Our findings suggest that the phenolic Mannich base could be a better GPR17 agonist than MDL29,951, and further uncovering their pharmacological properties could potentiate an inventive GBM treatment.Rational design of efficient lanthanide-doped down-shifting nanoparticles (DSNPs) has attracted tremendous attention. However, energy loss was inevitable in the multiple Ln3+ doping systems owing to complex energy migration processes. Here, an efficient NaErF4@NaYF4@NaYF410%Nd@NaYF4 DSNP was tactfully designed, in which a buffer layer of NaYF4 was modulated to restrict the interionic energy migration between Er3+ and Nd3+; meanwhile, the surface defects were passivated by an outermost layer of NaYF4. Therefore, the as-prepared DSNPs exhibited two intensive near-infrared-II fluorescence emissions of 1525 nm from Er3+ and 1060 nm from doped Nd3+ under 808 nm excitation. Further, a novel ratiometric nanoprobe NaErF4@NaYF4@NaYF410%Nd@NaYF4@A1094 was fabricated by coupling an organic dye of A1094 onto the DSNP surface to quench the 1060 nm emission by the efficient Förster resonance energy transfer, while emission at 1525 nm retained. Thereafter, these activatable ratiometric nanoprobes were used for rapid and sensitive detection of peroxynitrite (ONOO-) in vivo.The cis-stereoisomers of Δ9-THC [(-)-3 and (+)-3] were identified and quantified in a series of low-THC-containing varieties of Cannabis sativa registered in Europe as fiber hemp and in research accessions of cannabis. While Δ9-cis-THC (3) occurs in cannabis fiber hemp in the concentration range of (-)-Δ9-trans-THC [(-)-1], it was undetectable in a sample of high-THC-containing medicinal cannabis. Natural Δ9-cis-THC (3) is scalemic (ca. 80-90% enantiomeric purity), and the absolute configuration of the major enantiomer was established as 6aS,10aR [(-)-3] by chiral chromatographic comparison with a sample available by asymmetric synthesis. The major enantiomer, (-)-Δ9-cis-THC [(-)-3], was characterized as a partial cannabinoid agonist in vitro and elicited a full tetrad response in mice at 50 mg/kg doses. The current legal discrimination between narcotic and non-narcotic cannabis varieties centers on the contents of "Δ9-THC and isomers" and needs therefore revision, or at least a more specific wording, to account for the presence of Δ9-cis-THCs [(+)-3 and (-)-3] in cannabis fiber hemp varieties.Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.The design of hydrogels with switchable adhesion and stable antiswelling property in a wet environment has remained a challenge. Here, we report a biomimetic hydrogel that can adhere and detach on-demand on various material surfaces, which is realized by thermal-triggered switchable shape transformation on hexagonal micropillar patterned hydrogels. The hydrogels are cross-linked by two cross-linkers of poly(ethylene glycol) dimethacrylate and 2-ureidoethyl methacrylate, which guarantee the strong mechanical property and stable antiswelling property in a wet environment. The hydrogels can maintain stable water content in solutions with variable pH, temperature, and salt concentration, and the change in volume does not exceed 2%. In addition, due to the dynamical hydrogen bonds and dipole-dipole interaction in the hydrogels, the hydrogels exhibit a thermal-triggered shape-memory effect. The hydrogel can recover shape more than 80% in 15 s. Furthermore, inspired by the surface structure of tree-frog footpads, the hexagonal micropillar patterned hydrogels exhibit improved underwater adhesion strength. The underwater adhesion strength of hexagonal micropillar patterned hydrogels is seven times more than that of flat hydrogels. Based on the shape-memory effect of hydrogels, the adhesion strength can be altered by a thermal stimulus. The adhesion strength of the microstructures recovered from the hydrogel surface decreased to 15.4% of the initial adhesion strength. The switchable underwater adhesion of hydrogels can be applied in the fields of transfer printing, medical adhesives, mobile robots, etc.Resveratrol is a phenolic compound with strong antioxidant activity, being promising for several applications in health, food, and cosmetics. It is generally extracted from plants or chemically synthesized, in both complex and not sustainable processes, but microbial biosynthesis of resveratrol can counter these drawbacks. In this work, resveratrol production by microbial biosynthesis from lignocellulosic materials was assessed. Three robust industrial Saccharomyces cerevisiae strains known for their thermotolerance and/or resistance to inhibitory compounds were identified as suitable hosts for de novo resveratrol production from glucose and ethanol. Through the CRISPR/Cas9 system, all industrial strains, and a laboratory one, were successfully engineered with the resveratrol biosynthetic pathway via the phenylalanine intermediate. All strains were further screened at 30 °C and 39 °C to evaluate thermotolerance, which is a key feature for Simultaneous Saccharification and Fermentation processes. Ethanol Red RBP showed the best performance at 39 °C, with more than 2.6-fold of resveratrol production in comparison with the other strains. This strain was then used to assess resveratrol production from glucose and ethanol. A maximum resveratrol titer of 187.07 ± 19.88 mg/L was attained from a medium with 2% glucose and 5% ethanol (w/v). Lastly, Ethanol Red RBP produced 151.65 ± 3.84 mg/L resveratrol from 2.95% of cellulose from hydrothermally pretreated Eucalyptus globulus wood, at 39 °C, in a Simultaneous Saccharification and Fermentation process. To the best of our knowledge, this is the first report of lignocellulosic resveratrol production, establishing grounds for the implementation of an integrated lignocellulose-to-resveratrol process in an industrial context.

Saffron tepals are a by-product from the processing of Crocus sativus flowers, whose dried stigmas (saffron spice) are widely used both in the food and health sectors. Saffron tepals are rich in polyphenols, particularly flavonol glycosides and anthocyanins, which are considered to be potent antioxidants. Enzyme-assisted extraction of polyphenols offers several advantages in comparison to conventional methods. The present study evaluated the efficiency of enzyme-assisted extraction as a green technology for recovery of polyphenols from saffron tepals.

The by-product was obtained from a saffron producer in the region of Kozani, Greece. A simplex-centroid design was applied to select the enzyme preparations mixture required for aqueous extraction of polyphenolic antioxidants from dried saffron tepals. In addition, the parameters of enzymatic hydrolysis, enzyme dose and incubation time were optimised using response surface methodology.

The binary combination, comprising cellulolytic and hemicellulolytic preparations (11), led to the highest yield of total polyphenols (30.

Autoři článku: Nikolajsenmacgregor8404 (Riddle Woodward)