Nielsenkorsgaard8573

Z Iurium Wiki

Structured illumination microscopy (SIM) is a well-established method for optical sectioning and super-resolution. The core of structured illumination is using a periodic pattern to excite image signals. This work reports a method for estimating minor pattern distortions from the raw image data and correcting these distortions during SIM image processing. The method was tested with both simulated and experimental image data from two-photon Bessel light-sheet SIM. The results proves the method is effective in challenging situations, where strong scattering background exists, signal-to-noise ratio (SNR) is low and the sample structure is sparse. Experimental results demonstrate restoring synaptic structures in deep brain tissue, despite the presence of strong light scattering and tissue-induced SIM pattern distortion. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.PURPOSE Dose-volume histogram (DVH) measurements have been integrated into commercially available quality assurance systems to provide a metric for evaluating accuracy of delivery in addition to gamma analysis. We hypothesize that tumor control probability and normal tissue complication probability calculations can provide additional insight beyond conventional dose delivery verification methods. METHODS A commercial quality assurance system was used to generate DVHs of treatment plan using the planning CT images and patient-specific QA measurements on a phantom. Biological modeling was performed on the DVHs produced by both the treatment planning system and the quality assurance system. RESULTS The complication-free tumor control probability, P+ , has been calculated for previously treated intensity modulated radiotherapy (IMRT) patients with diseases in the following sites brain (-3.9% ± 5.8%), head-neck (+4.8% ± 8.5%), lung (+7.8% ± 1.3%), pelvis (+7.1% ± 12.1%), and prostate (+0.5% ± 3.6%). CONCLUSION Dose measurements on a phantom can be used for pretreatment estimation of tumor control and normal tissue complication probabilities. Results in this study show how biological modeling can be used to provide additional insight about accuracy of delivery during pretreatment verification. © 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.Recently, impacts of microRNAs have been unraveled in human diseases, and we aimed to confirm the role of miR-30b/30d in fulminant hepatic failure (FHF). Expression of miR-30b/30d and CEACAM1 in serum of FHF patients and healthy people was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Mice FHF models were established by injection of D-Galn and lipopolysaccharide, and were treated with miR-30b/30d mimics. Oxidative stress, liver injury, and inflammatory reaction in mouse liver tissues were measured using oxidative stress-related factor kits, hematoxylin-eosin staining and enzyme-linked immunosorbent assay, respectively. Moreover, cell cycle distribution and apoptosis of hepatocytes of mice were determined by flow cytometry, and the target relation between miR-30b/30d and CEACAM1 was confirmed by bioinformatic method and dual luciferase reporter gene assay. MiR-30b/30d expression was positively, and CEACAM1 expression was negatively related to prognosis of FHF patients. Up-regulation of miR-30b/30d attenuated oxidative stress, liver injury, and inflammatory reaction, and improved survival rate of FHF mice. Furthermore, elevated miR-30b/30d ameliorated apoptosis and cell cycle arrest of hepatocytes of FHF mice. CEACAM1 was a target gene of miR-30b/30d. This study highlights that up-regulated miR-30b/30d attenuates the progression of FHF by targeting CEACAM1, which may be helpful to FHF treatment. © 2020 International Union of Biochemistry and Molecular Biology.We report a flexible light-sheet fluorescence microscope (LSFM) designed for studying dynamic events in cardiac tissue at high speed in 3D and the correlation of these events to cell microstructure. The system employs two illumination-detection modes the first uses angle-dithering of a Gaussian light sheet combined with remote refocusing of the detection plane for video-rate volumetric imaging; the second combines digitally-scanned light-sheet illumination with an axially-swept light-sheet waist and stage-scanned acquisition for improved axial resolution compared to the first mode. We present a characterisation of the spatial resolution of the system in both modes. The first illumination-detection mode achieves dual spectral-channel imaging at 25 volumes per second with 1024 × 200 × 50 voxel volumes and is demonstrated by time-lapse imaging of calcium dynamics in a live cardiomyocyte. The second illumination-detection mode is demonstrated through the acquisition of a higher spatial resolution structural map of the t-tubule network in a fixed cardiomyocyte cell. © 2020 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.In the adult mouse hippocampus, new neurons are produced by radial glia-like (RGL) neural stem cells in the subgranular zone, which extend their apical processes toward the molecular layer, and express the astrocyte marker glial fibrillary acidic protein, but not the astrocyte marker S100β. In rodent models of epilepsy, adult hippocampal neurogenesis was reported to be increased after acute and mild seizures, but to be decreased by chronic and severe epilepsy. In the present study, we investigated how the severity of seizures affects neurogenesis and RGL neural stem cells in acute stages of epilepsy, using an improved mouse pilocarpine model in which pilocarpine-induced hypothermia was prevented by maintaining body temperature, resulting in a high incidence rate of epileptic seizures and low rate of mortality. learn more In mice that experienced seizures without status epilepticus (SE), the number of proliferating progenitors and immature neurons were significantly increased, whereas no changes were observed in RGL cells. In mice that experienced seizures with SE, the number of proliferating progenitors and immature neurons were unchanged, but the number of RGL cells with an apical process was significantly reduced. Furthermore, the processes of the majority of RGL cells extended inversely toward the hilus, and about half of the aberrant RGL cells expressed S100β. These results suggest that seizures with SE lead to changes in the polarity and properties of RGL neural stem cells, which may direct them toward astrocyte differentiation, resulting in the reduction of neural stem cells producing new granule cells. This also suggests the possibility that cell polarity of RGL stem cells is important for maintaining the stemness of adult neural stem cells. © 2019 Wiley Periodicals, Inc.

Autoři článku: Nielsenkorsgaard8573 (Ennis McKinney)