Niebuhrthomas3800
We aimed to test whether the serum adipokines leptin and adiponectin are more strongly associated with body fat percentage (BF%) than body mass index (BMI) in adolescents with type 1 diabetes (T1D) and overweight/obesity.
We studied all participants in the T1D Exchange Metformin Study (n=122, median age 12.9 years, range 12-19.5; 32% males; 77% non-Hispanic whites, 100% overweight or obesity; median diabetes duration 6.7 years, range 1.4-15) with a baseline serum sample where we measured leptin and adiponectin concentrations. Anthropometric, clinical, laboratory and dual-energy X-ray absorptiometry (DEXA) scan measurements were analyzed. We compared correlation coefficients between variables of interest.
BF% by DEXA was significantly correlated with BMI Z-score (r=0.38, p<0.0001), BMI per cent of the 95th percentile (BMI%95) (r=0.45, p<0.0001), waist circumference (r=0.46, p<0.0001), leptin (r=0.58, p<0.00001) and leptin/adiponectin ratio (r=0.36, p<0.0001), while it was not significantly correlated with absolute body weight, adiponectin or insulin dose (total or basal). BF% was significantly more strongly correlated with leptin than with BMI Z-score in the overall group (p=0.022). However, there were sex-based differences. Among the significant correlations in the overall group, BF% was most strongly associated with leptin (r=0.75) in boys (n=39) but with waist circumference (r=0.58) in girls (n=83) (all p<0.0001).
Serum leptin could be used as a surrogate convenient marker of adiposity in overweight/obese adolescent boys with T1D, equivalent to BMI Z-score or BMI%95. In girls, waist circumference was the best performing marker overall, and was also strongly correlated with %BF in boys.
Serum leptin could be used as a surrogate convenient marker of adiposity in overweight/obese adolescent boys with T1D, equivalent to BMI Z-score or BMI%95. In girls, waist circumference was the best performing marker overall, and was also strongly correlated with %BF in boys.
Early screening for diabetic retinopathy (DR) with an efficient and scalable method is highly needed to reduce blindness, due to the growing epidemic of diabetes. The aim of the study was to validate an artificial intelligence-enabled DR screening and to investigate the prevalence of DR in adult patients with diabetes in China.
The study was prospectively conducted at 155 diabetes centers in China. A non-mydriatic, macula-centered fundus photograph per eye was collected and graded through a deep learning (DL)-based, five-stage DR classification. Images from a randomly selected one-third of participants were used for the DL algorithm validation.
In total, 47 269 patients (mean (SD) age, 54.29 (11.60) years) were enrolled. 15 805 randomly selected participants were reviewed by a panel of specialists for DL algorithm validation. The DR grading algorithms had a 83.3% (95% CI 81.9% to 84.6%) sensitivity and a 92.5% (95% CI 92.1% to 92.9%) specificity to detect referable DR. The five-stage DR classification performance (concordance 83.0%) is comparable to the interobserver variability of specialists (concordance 84.3%). The estimated prevalence in patients with diabetes detected by DL algorithm for any DR, referable DR and vision-threatening DR were 28.8% (95% CI 28.4% to 29.3%), 24.4% (95% CI 24.0% to 24.8%) and 10.8% (95% CI 10.5% to 11.1%), respectively. The prevalence was higher in female, elderly, longer diabetes duration and higher glycated hemoglobin groups.
This study performed, a nationwide, multicenter, DL-based DR screening and the results indicated the importance and feasibility of DR screening in clinical practice with this system deployed at diabetes centers.
NCT04240652.
NCT04240652.
Obesity-related insulin resistance is a widely accepted pathophysiological feature in type 2 diabetes. Systemic metabolism and immunity are closely related, and obesity represents impaired immune function that predisposes individuals to systemic chronic inflammation. Increased macrophage infiltration and activation in peripheral insulin target tissues in obese subjects are strongly related to insulin resistance. Using a macrophage-specific proliferation inhibition mouse model (mac-p27Tg), we previously reported that suppressed plaque inflammation reduced atherosclerosis and improved plaque stabilization. However, the direct evidence that proliferating macrophages are responsible for inducing insulin resistance was not provided.
The mac-p27Tg mice were fed a high-fat diet, and glucose metabolism, histological changes, macrophage polarization, and tissue functions were investigated to reveal the significance of tissue macrophage proliferation in insulin resistance and obesity.
The mac-p27Tg mice showed im insulin resistance. selleck inhibitor Controlling the number of tissue macrophages by inhibiting macrophage proliferation could be a therapeutic target for insulin resistance and type 2 diabetes.
Diabetes-associated endothelium dysfunction might be linked to disturbances in Ca
homeostasis. Our main objective is to reveal the potential mechanisms by which high-glucose (HG) exposure promotes increased proliferation of human coronary artery endothelial cells (HCAECs) in culture, and that store-operated Ca
entry (SOCE) and insulin-like growth factor binding protein 3 (IGFBP3) contribute to this proliferation.
We detected the expression levels of Ca
release-activated calcium channel proteins (Orais), IGFBP3 and proliferating cell nuclear antigen of HCAECs cultured in HG medium for 1, 3, 7, and 14 days and in streptozotocin-induced diabetic mouse coronary endothelial cells. Coimmunoprecipitation and immunofluorescence technologies were used to detect the interactions between Orais and IGFBP3 of HCAECs exposed to HG environment, and to detect IGFBP3 expression and proliferation after treatment of HCAECs cultured in HG medium with an agonist or inhibitor of SOCE. Similarly, after transfection of spe worth noting that our findings may shed new light on the mechanisms of increased proliferation in HCAECs in diabetes and suggest the potential value of SOCE and IGFBP3 as therapeutic targets for coronary atherosclerosis in individuals with diabetes.
Orais and IGFBP3 formed a signaling complex that mediated HCAEC proliferation during HG exposure in culture. Meanwhile, we also found that SOCE stimulates proliferation of HCAECs by regulating IGFBP3, thereby promoting the occurrence and progression of coronary atherosclerosis in diabetes. It is worth noting that our findings may shed new light on the mechanisms of increased proliferation in HCAECs in diabetes and suggest the potential value of SOCE and IGFBP3 as therapeutic targets for coronary atherosclerosis in individuals with diabetes.